Cumulative Subject Index for Volumes 156-1621 Α Absorption spectra Nd³⁺ in Nd₂BaCuO₅ and Nd₂BaZnO₅, **162**, 42 Activation energy sodium ion motion in Nasicon structures, modeling, 156, 154 Aldehydes intercalation into VOPO₄, 157, 50 Alkali 4-halogenomethylbenzoates solid-state polycondensation reaction in, structural aspects, 156, 61 effects on amorphous to crystalline phase transition of silica, 161, 373 Alkaline aqueous solutions synthesis of nanocrystalline binary metal chalcogenides in, 161, 184 Alkali titanium oxides pseudo-one-dimensional periodic domain boundary structures, 162, 128 related Ag₂FeMn₂(PO₄)₃, neutron diffraction, Mössbauer spectrum, and magnetic behavior, 159, 46 Aluminum activated surface hydrolysis into AlO(OH) · α H₂O nanocrystals in monoclinic structure, 157, 40 Al(CN)₃, synthesis and structural properties, 159, 244 AIF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux, 161, 80 Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278 Al-Li-Si system Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria, polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506 γ-Al₂O₃, NiO dispersion on, **157**, 274 Al-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134 Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, synthesis and characterization, 158, 134 BaAl₂O₃(OH)₂·H₂O with six-membered rings, synthesis and characterization, 161, 243 boehmite, thermal evolution, dependence on atom bond lengths and crystallite size, 161, 319 CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, **157**, 62 [CuAl] layered double hydroxide, platinum complex intercalation into, **161.** 332 defect in Al-doped Sm-123 high-temperature superconductor, structure of, electron density study, 161, 396 fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, 161, 259 LiAlB₂O₅, ab initio structure determination, 156, 181 linear-chain phosphates, synthesis by reaction of amine phosphates with Al³⁺ ions, **156**, 185 Mg-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52 Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, 161, 249 [MgAl] layered double hydroxide, platinum complex intercalation into, Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and in situ Mössbauer spectroscopy, 161, 38 Mn-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, Ni-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52 Si-Al nanocomposite with hexagonal structure, synthesis and characterization, 158, 134 TiAl intermetallics, reaction with nitrogen plasma, 157, 339 TiO_2/γ -Al₂O₃, NiO dispersion on, 157, 274 $U_3Al_2M'_3$ (M' = Si,Ge), magnetotransport and heat capacity, 158, 227 Zn-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52 [ZnAl] layered double hydroxide, platinum complex intercalation into, 161, 332 Amine phosphates reaction with Al³⁺ ions: synthesis of linear-chain aluminum phosphates, **156,** 185 Amino acids direct intercalation into layered double hydroxides by coprecipitation, **162.** 52 Ammonium H₂O(NH₄)₂HPO₄-(NH₄)₂SO₄, polythermal diagram between 0 and 25°C, 156, 264 (NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, **157,** 180 (NH₄)Cl, mixture with HgCl₂, reactivity with Monel containers, 162, 254 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, 162, 254 $NH_4Ln_3F_{10}$ (Ln = Dy, Ho, Y, Er, Tm), hydrothermal syntheses and crystal structure, 158, 358 (NH₄)₄H₂(SeO₄)₃, crystal structure below 180 K, 160, 189 (NH₄)₂(NH₃)_x[Ni(NH₃)₂Cl₄], preparation and crystal structure, 162, NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, **162**, 347 (NH₄)₇U₆F₃₁, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, 156, 480 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, thermal analysis and crystal structure at 435 K, **161**, 1 ammonium zinc gallophosphate analog of, synthesis and structure, **156,** 480 Anatase TiO₂ nanocrystals, preparation, characterization, and spectral studies, **158,** 180 ¹Boldface numbers indicate volume; lightface numbers indicate pagnation. Angular overlap model control of magnetic anisotropy in molecular materials, 159, 253 Anion-excess fluorite related phases in LnOF-LnF₃ systems (Ln = Nd,Sm,Eu,Gd), characterization and defect structure, **157**, 134 Anionic charge order model oxide superconductivity, 158, 139 Antiferroelectrics $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20 Antiferromagnetic chains Ba₅Co₅ClO₁₃, **158**, 175 spin-1/2 quantum, with tunable exchange interactions, in $BaCu_2$ ($Si_{1-x}Ge_x$)₂O₇ system, **156**, 101 Antiferromagnetic coupling $[M(\text{dicyanamide})_2\text{pyrazine}]$ (M = Mn,Fe,Co,Ni,Zn), 159, 352 Li₂Mn₂(SO₄)₃, 158, 148 polynuclear self-assembled Mn(II) and Co(II) cluster complexes, 159, 308 Antiferromagnetic insulating phase V₂O₃, AC conductivity, 159, 41 Antiferromagnetic ordering CdCr_{2-x}Ga_xSe₄ spinel system, **158**, 34 Antiferromagnetism κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, **159**, 407 [Cp₂Mo(dmit)][Br], ordered antiferromagnetic ground state, **159**, 413 marokite, **160**, 167 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, **159**, 362 V₂O₃, antiferromagnetic insulator-paramagnetic metal phase transition in V₂O₃, conductivity studies, 159, 41 Antimony Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72 CuSb₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, **156**, 110 FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79 Li₃CuSbO₅, crystal structure, 156, 321 $Na_9Gd_5Sb_8S_{26}$, synthesis and crystal structure, 161, 129 $Na_2M_3Sb_4$ (M = Sr,Ba), synthesis, structure, and properties, **162**, 327 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, **160**, 450 NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, **162**, 347 RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 TSbCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162**, 69 Sb₂O(CH₃PO₃)₂, synthesis and layered structure, 162, 347 $SbSb_xM_{1-x}O_4$ ($M = Nb^V, Ta^V$), solid solution behavior and second-harmonic generating properties, **161**, 57 LnSbS₂Br₂ (Ln = La,Ce), crystal and electronic structures and optical properties, 158, 218 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76 Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158 Ti₁₁(Sb,Sn)₈, structure and physical properties, 157, 225 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177 Antiphase boundaries in K₂In₁₂Se₁₉, **161**, 385 $Ni_{6\pm x}Se_5$, **162**, 122 Apatite $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$ and $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta},$ modified chimney–ladder structures with ladder–ladder and chimney–ladder coupling, **156**, 88 fluoroapatite and hydroxyapatite materials, electrical properties, comparison, **156**, 57 Apparent multiplicity L-Ta₂O₅ and related structures, 160, 62 Aromatic stacking interactions π - π , topological control of two-dimensional Co(II) coordination polymers, **159**, 371 Arsenic TAsCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162.** 69 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, 161, 9 Li-M-As (M = V,Nb,Ta), synthesis and crystal structure, **156**, 37 [Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243 Aurivillius oxides $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K), crystal structure, powder neutron diffraction study, **157**, 160 with n = 1, production by mechanochemical activation, 160, 54 В Band gap energy CuSe and Cu₃Se₂ thin films, 158, 49 KSmP₂S₇, NaSmP₂S₆, and NaYbP₂S₆, **160**, 195 Na₉Gd₅Sb₈S₂₆, **161**, 129 TiO₂ nanocrystalline anatase, 158, 180 Band structure analysis of low coordination of Ag⁺ and Cu⁺ in chalcogenide environments, **160**, 212 IrTe₂ phases prepared under high pressure, calculations, 162, 63 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb),**162,**90 Nb₂₈Ni_{33.5}Sb_{12.5}, **160**, 450 SrBi₂Se₄, **156**, 230 $Sr_{9/8}TiS_3$ and $Sr_{8/7}TiS_3$, effects of metal-metal sigma bonding, 162, 103 Th₃Co₃Sb₄, **162**, 158 TlTe, 157, 193 Barium Ba_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, **159**, 149 $BaAl_2O_3(OH)_2 \cdot H_2O$ with six-membered rings, synthesis and characterization, $161,\,243$ BaBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, **160**, 174 Ba₄CeNb₁₀O₃₀, with TTB-type structure, crystal structure, 157, 1 $Ba_5Co_5ClO_{13}$, synthesis, crystal structure, and magnetic and electrical properties, 158, 175 Ba_{1.1064}CoO₃, modulated composite structure with two subsystems, **161**, 300 $(Ba_8Co_6O_{18})_z(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, 162, 322 BaCuO₂, structure simulation using interatomic potentials, 158, 162 $M\mathrm{Ba_2}Q\mathrm{Cu_2O_{6+z}}$ ($M=\mathrm{Cu,Hg,Tl/Pb};$ $Q=\mathrm{rare}$ earth, Ca; z=0–1), structure–property relationships, modeling by multivariate analysis methods, **162**, 1 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101 BaCu₂Te₂, structure and physical properties, 156, 44 BaFe[(CN)₅NO] · 3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} prepared from, ab initio structure solution, **160**, 17 BaHfO₃ perovskite, Pr⁴⁺ ions doped in, EPR study, 156, 203 Ba₇Ir₆O₁₉, structural relationship to Sr₇Re₄O₁₉, 160, 45 BaKCu₃MS₄ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144 nBa(Nb,Zr)O₃ + 3mNbO (n = 2–5; m = 1), single-crystal X-ray diffraction studies, **156**, 75 Ba[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241 BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163 Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, $Ba_x BO_3$ (B = Co, Ni), magnetic properties, structural and electronic factors governing, **160**, 239 A'[Ba₂B₃O₁₀] (A' = Rb,Cs; B = Nb,Ta), Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279 $Ba_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57 $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd; M = Co, Zn), crystal structure and magnetic properties, 159, 163 Ba[(UO₂)₂(IO₃)₂O₂](H₂O), formation, effect of cation, **161**, 416 BaV₁₃O₁₈, crystal structure, **158**, 61 BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, 162, 237 CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, **161**, 97 ${\rm Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355 La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117 Na₂Ba₃Sb₄, synthesis, structure, and properties, **162**, 327 Nd₂BaCuO₅ and Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis. **162.** 42 Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106 substitution in $Pb_5Ta_{10}O_{30}$, effect on ferroelectric properties, 157, 261 $YBaCo_2O_{5+x}$ (0.00 $\leq x \leq$ 0.52), oxygen nonstoichiometry, structures, and physical properties, 156, 355 #### Batteries alkaline, nickel-cobalt oxyhydride electrodes of, outcome of cobalt in, **162.** 270 electrochemically cycled Si-doped SnO_2 -lithium thin-film battery, microstructural evolution, 160, 388 Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, **162**, 176 lithium-ion secondary batteries, $Li(Mn,M)_2O_4$ (M=Cr,Co,Ni) 5V cathode materials for, in situ XAFS analysis, 156, 286 # Benzaldehyde intercalation into VOPO₄, 157, 50 $1,\!3,\!5\text{-Benzenetricarb} oxylate$ $\text{Co}_3\text{BTCA}_2(\text{H}_2\text{O})_4$, resonance in nonlinear susceptibilities, **159**, 379 2,1,3-Benzothiadiazole Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties. **159.** 371 # Berthierite FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79 # Beryllium Be(CN)₂, synthesis and structural properties, 159, 244 2,2'-Bipyridine [$\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}$], hydrothermal synthesis and crystal structure, **161**, 173 # Bipyrimidine charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bipym)]· 0.15H₂O, **159**, 385 Bis(ethylenedithio)tetraselenathiafulvalene κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 Bis(ethylenedithio) tetrathiafulvalene charge transfer salts with thiocyanato-complex anions, 159, 385 Bis(isonicotinato)copper(II) dihydrate hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315 # Bismuth $BiCa_9(VO_4)_7$, synthesis and structure, 157, 255 $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, 156, 168 $Bi_{2-x}In_xSe_3$ single crystals, transport properties, 160, 474 Bi_{4.86}Li_{1.14}O₉ monoclinic structure, *ab initio* determination from powder neutron diffraction data, **162**, 10 BiMn₆PO₁₂, preparation, structure, and magnetic properties, **157**, 123 Bi₂MoO₆ Aurivillius compound, production by mechanochemical activation, 160, 54 $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K), crystal structure, powder neutron diffraction study, **157**, 160 Bi₂Ru₂O₇ pyrochlore oxide, sol-gel synthesis in alkaline medium, **161**, 379 Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72 Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39 ABi₂Ta₂O₉ (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, **160**, 174 Bi₂TeO₅, oxidation, thermoanalytical and optical microscopic studies, **161.** 365 Bi₂VO₅ and Bi₂VO_{5.5}, Aurivillius compounds, production by mechanochemical activation, **160**, 54 Bi_{3.5}V_{1.2}O_{8.25}, preparation and characterization, **161**, 410 Ce_{1-x}Bi_xVO₄ solid solutions Raman and IR spectroscopy, 158, 254 Raman spectroscopy for $0 \le x \le 0.68$, 158, 264 fluorinated Bi-2201 phases, suppression of modulations in, 156, 445 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307 SrBi₂Se₄, synthesis and characterization, 156, 230 Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142 YNbO₄:Bi, electronic structure and luminescence properties, **156**, 267 Bis(*trans*-4-pyridylacrylate) interpenetration networks formed with Co(II), Cu(II), and Ni(II), hydrothermal syntheses and crystal structures, 157, 166 Bis(salicylaldehyde)ethylenediamine [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403 2,5-Bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, structural aspects, 161, 121 # Boehmite crystallite size and bond lengths, relationship, 159, 32 thermal evolution, dependence on atom bond lengths and crystallite size, **161.** 319 # Bonding BaV₁₃O₁₈: V-V (cation-cation) bond, **158**, 61 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93 metal–metal sigma bonding, effects on structures and physical properties of $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103 $R_3 \text{Ru}_2 \text{C}_5$ (R = Y,Gd-Er), 160, 77 short Pb-Pb bonds in Ti₆Pb_{4.8}, **159**, 134 sigma antibonding, effect on magnetic properties of A_xBO_3 ($A={\rm Ca,Sr},$ Ba; $B={\rm Co,Ni},$ 160, 239 Th₃Co₃Sb₄, 162, 158 TlFeO₃, comparison with AFeO₃ (A = rare earth), **161**, 197 # Bond length in boehmite, relationship to crystallite size, 159, 32 role in thermal evolution of boehmite, 161, 319 Bond valence in modeling of ionic conductivity in Nasicon structures, 156, 154 Boron AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_c 's, 160, 93 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, **159.** 174 BN multilayered coatings, deposition onto Hi-Nicalon fibers via continuous LPCVD treatment, 162, 358 Co₃[BPO₇], synthesis and characterization, **156**, 281 $[Cp_2Mo(dmit)][BF_4^-]$, association into dimers, 159, 413 α -CsB₅O₈ and γ -CsB₅O₈, crystal structures, **161**, 205 CsBSe₃, synthesis, crystal structure, and properties, 157, 206 LiAlB₂O₅, ab initio structure determination, 156, 181 $\text{Li}_2 L n_5 \text{O}_4 (\text{BO}_3)_3$ (Ln = Yb, Lu), discovery in $\text{Li}_2 \text{O} - L n_2 \text{O}_3 - \text{B}_2 \text{O}_3$ phase diagram and structural analysis of Yb phase, 156, 161 β-RbB₅O₈, crystal structure, **161**, 205 RbBSe₃, synthesis, crystal structure, and properties, 157, 206 $ScB_{19+x}Si_{y}$, floating zone crystal growth and structure analysis, **160**, 394 β-Tl₂B₄O₇ containing three-dimensional borate anion, structure, 160, TlBSe₃, synthesis, crystal structure, and properties, 157, 206 tris[p-(N-oxyl-N-tert-butylamino)phenyl]borane, ground spin states, **159**, 428 κ-(BETS)₂FeBr₄ with superconducting transitions, effect of halogen substitution, 159, 407 $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$, modified chimney-ladder structures with ladderladder and chimney-ladder coupling, 156, 88 Co(II) coordination polymer $\{[CoBr_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, 159, 371 [Cp₂Mo(dmit)][Br], ordered antiferromagnetic ground state, **159**, 413 CsSn₂Br₅ compounds, cluster orbital formation in, 160, 382 $[Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}]$ and $[Cu(H_2NCH_2CH_2NH_2)_2]$ [{Cu₅Br₇}], hydrothermal synthesis and X-ray crystal structure, **158,** 55 HgBr₂ intercalated Bi₂Sr₂CaCu₂O_v single crystal, polarized X-ray absorption spectroscopy, 160, 39 LaOBr, mechanochemical synthesis and solid state solutions, 160, 469 Mg(ND₃)₂Br₂, uniaxial orientational order-disorder transitions, neutron diffraction study, 156, 487 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225 Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327 Nb₆Br₈F₇, synthesis and crystal structure, 158, 327 $LnSbS_2Br_2$ (Ln = La,Ce), crystal and electronic structures and optical properties, 158, 218 3-Bromo-trans-cinnamic acid system polymorphic phase transformation, 156, 10 Bronze H_xMoO₃, leaching treatments, 159, 51 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes: characterization and synthesis of purple, blue, and red Mo bronzes, 159, 87 lead-free relaxor ferroelectrics with tetragonal tungsten bronze structure, solid state chemistry, 162, 260 $A_x \text{Mo}_v \text{W}_{1-v} \text{O}_3$ (A = K,Ce) intergrowth tungsten bronzes, synthesis and microanalysis, 162, 341 tetragonal tungsten bronze structure, Pb-Nb-W-O oxides based on, 161, 135 t-Butanol $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, 156, 51 Butyraldehyde intercalation into VOPO₄, 157, 50 С Cadmium binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184 CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, 161, 97 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, 158, 34 CdGa₂Se₄, pressure-induced phase transitions, 160, 205 $Cd_{5-n/2}(PO_4)_3Br_{1-n}$ modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, 156, 88 CdTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladderladder and chimney-ladder coupling, 156, 88 Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, **161,** 23 Cu_xCd_{1-x}(HCOO)₂·2H₂O, crystal structure and thermal behavior, **157.** 23 $K_4[Cd_3(HPO_4)_4(H_2PO_4)_2]$, synthesis and layered structure, 162, 188 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O$, revised space groups, 159, 7 open-framework oxalates with channels stabilized by alkali metal ions, **162.** 150 Rb₂CdSiO₄, synthesis and crystal structure, 162, 214 Calcium Bi₂Sr₂CaCu₂O_v, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, 160, 39 Ca_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, 159, 149 CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, 157, 62 CaBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, **160**, 174 Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, cation ordering types and dielectric properties, 156, 122 Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 [Ca2CoO3][CoO2]1.62, misfit layer compounds, 4D structural study, 160, 322 Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 CaCuO₂ and Ca₂CuO₃, structure simulation using interatomic potentials, 158, 162 CaLaFeVO₆ double-perovskite oxide, synthesis, structure, and properties, 162, 250 $Ca_2MnGaO_{5+\delta}$, synthesis and crystal structure, **158**, 100 CaMn₂O₄ marokite, antiferromagnetism, **160**, 167 Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, 160, 257 Ca[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241 Ca₂NF, preparation and single-crystal structure analysis, 160, 134 Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CaO polycrystals doped with Co, cellular paracrystal formation from, **161**, 341 Ca_xBO_3 (B = Co,Ni), magnetic properties, structural and electronic factors governing, 160, 239 $Ca_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57 carbonated hydroxyapatite deficient in, crystal structure and thermal decomposition, 160, 340 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, 156, 26 Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, 160, 8 Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, 161, 274 $ACa_9(VO_4)_7$ (A = Bi,rare earth), synthesis and structure, 157, 255 - Ca_{1-x}Y_xMnO₃, structural phase diagram, **156**, 458 - $Ce_{1-x}Ca_xVO_{4-0.5x}$ solid solutions Raman and IR spectroscopy, 158, 254 Raman spectra for $0 \le x \le 0.41$, **158**, 264 ${ m Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355 insertion in Na₄Mn₉O₁₈ tunnel structure, 162, 34 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites, pillaring with Fe_2O_3 nanoparticles, **160**, 435 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307 (La,Ca)CrO₃, thermal expansion in, computer simulation, 156, 394 La-Ca-Mn-O system, phase equilibrium, 156, 237 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, **157**, 309 NaCa₂GeO₄F, synthesis and structure, 160, 33 $Na_{1.1}Ca_{1.8}Mn_9O_{18}$, synthesis by calcium insertion in $Na_4Mn_9O_{18}$ tunnel structure, **162**, 34 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370 Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, **160**, 1 Sr_{1.19}Ca_{0.73}Cu₂O₄, structure simulation using interatomic potentials, 158, 162 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x), evolution of crystallographic phases in, **162**, 20 substitution in Pb₅Ta₁₀O₃₀, effect on ferroelectric properties, **157**, 261 Calorimetry differential scanning, see Differential scanning calorimetry $PbZr_xTi_{1-x}O_3$ solid solutions: enthalpies of formation, **161**, 402 Capacitance negative, V₂O₃, **159**, 41 Capronaldehyde intercalation into VOPO₄, 157, 50 Carbon Al(CN)₃, synthesis and structural properties, 159, 244 Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, **160**, 278 amorphous, C₆₀ transformation to, under hydrothermal conditions, **160**, 184 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, 159, 174 Be(CN)2, synthesis and structural properties, 159, 244 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 M_4 Cd₂(C₂O₄₎₄· 4H₂O (M= Na,K), synthesis, structure, and properties, **162.** 150 Ce₂Ni₂₂C_{2.75}, nonintegar Ce valency in, **161**, 63 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209 C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307 C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, 156, 364 $(C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O$, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 $(C_2H_{10}N_2)Zr_2F_{10}\cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6\cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, synthesis, crystal structure, and NMR, **162**, 168 [C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, 157, 110 Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379 Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413 [Cr(CN)₆]₂[Ni(L)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302 [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, 159, 321 [Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn, Co, Ni, Cd), crystal structures and thermal behavior, **157**, 23 $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$ $\begin{array}{l} \hbox{[Cu$_{12}$Ln$_6$(μ_3-OH)$_24$(C_5H_5NCH_2CO_2$)$_{12}$($H$_2$O)$_{18}$(μ_9-NO$_3$)]$($PF$_6$)$_{10}$ \\ \hbox{(NO$_3$)$_7} \cdot 12$H$_2$O$($Ln$^{III} = SmIII,GdIII), synthesis and characterization, \\ \textbf{161,} 214 \end{array}$ Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278 [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352 N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312 Dy₃Si₂C₂, subcell and superstructure, 156, 1 fullerene hydrothermal behavior: transformation to amorphous carbon and carbon nanotube formation, **160**, 184 fullerene superconductors, anionic charge order model, 158, 139 graphite, LiCoO $_2$ film fabrication on, in flowing aqueous solutions at 150°C, **162**, 364 K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400 layered molecule-based magnets formed by decamethylmetallocenium cations, 159, 391 $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324 Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249 $Mg(CN)_2$, synthesis and structural properties, 159, 244 [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403 Mn_xCo_{1-x}(O₃PC₆H₅)·H₂O, structure and magnetic properties, **159**, 362 MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293 [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32 [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space \\ groups, \ \textbf{159}, \ 7$ monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, nanotubes, formation from fullerenes under hydrothermal conditions, 160, 184 $(NC_5H_{12})_2\cdot Zn_3(HPO_3)_4,$ low-density framework built up from fully connected (3,4) net of ZnO_4 tetrahedra and HPO_3 pseudo pyramids, $160,\,4$ $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, and crystal structure, **157**, 241 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347 $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, solvothermal synthesis and crystal structure, **158**, 68 $Ln_2O_2CO_3$ II (Ln = La, Nd), 158, 14 polyarylmethyl polyradicals as organic spin clusters, 159, 460 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308 $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$ and $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324 Pr₃Si₂C₂, subcell structure, 156, 1 R_3 Ru₂C₅ (R = Y,Gd-Er), preparation, properties, and crystal structure, Sb₂O(CH₃PO₃)₂, synthesis and layered structure, **162**, 347 SiC, Hi-Nicalon fibers, multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358 $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, structure determination from powder X-ray and neutron diffraction studies, 157, 283 Tb₃Si₂C₂, subcell and superstructure, 156, 1 TiC, formation by combution reaction during mechanical alloying, mechanism, 158, 268 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O \quad and \quad Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O, \ hydrothermal \ synthesis \ and \ structure, \ \textbf{162}, \ 96$ Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244 tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground spin states, **159**, 428 1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, **159**, 451 WC, formation by continuous reaction during mechanical alloying, mechanism, 158, 268 Y₃Si₂C₂, subcell and superstructure, **156**, 1 Cathode materials Li(Mn,M)₂O₄ (M = Cr,Co,Ni), for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 Cathodoluminescence spectra $SrIn_2O_4$ phosphors emitting red light and activated by praseodymium, 156, 84 Cation disorder in ferroelectric oxides $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba), 160, 174 Cation ordering in complex perovskite Ca(Ca_{1/3}Nb_{2/3})O₃, effects on dielectric properties, **156**, 122 Cation vacancy formation in Ba₄CeNb₁₀O₃₀ with TTB-type structure, **157**, 1 Cerium $Ba_4CeNb_{10}O_{30}$, with TTB-type structure, crystal structure, **157**, 1 $BaCe_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, CeAgMg, synthesis and crystal structures, 161, 67 Ce_{1-x}Bi_xVO₄ solid solutions Raman and IR spectroscopy, 158, 254 Raman spectroscopy for $0 \le x \le 0.68$, **158**, 264 $Ce_{1-x}Ca_xVO_{4-0.5x}$ $(0 \le x \le 0.41)$ solid solutions, Raman spectra, 158, 264 CeIrIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25 $Ce_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90 $Ce_2Ni_{22}C_{2.75}$, nonintegar Ce valency in, 161, 63 CeBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 $CeRhIn_5$ heavy fermion materials, crystal growth and intergrowth structure, 158, 25 CeSbS₂Br₂, crystal and electronic structures and optical properties, 158, 218 CeTi_{0.5}V_{0.5}O₃, magnetic properties, **156**, 452 $Ce_{1-x}M_xVO_{4-0.5x}(M = Pb,Sr,Ca)$ solid solutions, Raman and IR spectroscopy, **158**, 254 fluorite-type ceria-zirconia solid solution nanoparticles, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112 (NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, **157**, 180 Cesium AlF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux, **161**, 80 Ce_xMo_yW_{1-y}O₃ intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341 $\alpha\text{-CsB}_5\mathrm{O}_8$ and $\gamma\text{-CsB}_5\mathrm{O}_8,$ crystal structures, 161, 205 CsBSe₃, synthesis, crystal structure, and properties, 157, 206 $Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O$, synthesis and characterization, 156, 242 Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204 CsGd₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, **161**, 9 CsLa₂CuSe₄, synthesis, structure, and physical properties, **158**, 299 CsLa₂Ti₂TaO₁₀ layered perovskites, structure, 158, 290 ${\rm CsNO_3},$ structural phase transitions, molecular dynamics simulation, 160, 222 $Cs'[A_2B_3O_{10}]$ (A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279 $\mathrm{Cs_3P_6N_{11}}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390 CsSm₂CuSe₄, synthesis, structure, and physical properties, 158, 299 $CsSn_2X_5$ compounds (X = Cl,Br), cluster orbital formation in, **160**, 382 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 effects on amorphous to crystalline phase transition of silica, **161**, 373 Chain compound fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, 161, 259 MnCr₃(CN)₉ chain compound, magnetic properties, 159, 293 Chalcogenide environment low coordination of Ag+ and Cu+ in, 160, 212 Charge-carrier localization on Mn surface sites in granular LaMnO_{3+δ}, **160**, 123 Charge ordering anionic charge order model for oxide superconductivity, **158**, 139 Charge transfer photo- and dehydration-induced, with spin transition on CoFe(CN)₅ NH₃·6H₂O, **159**, 336 Charge transfer salts bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, 159, 385 molecule-based magnets, design and synthesis, 159, 420 Chemical bath deposition CuSe and Cu₃Se₂ thin films, 158, 49 Chemical vapor deposition continuous low-pressure, in deposition of multilayered BN coatings onto Hi-Nicalon fibers, **162**, 358 Chimney-ladder structures $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$ and $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, computer modeling, **156**, 88 Chirality α-nitronyl nitroxide radicals in solid state, 159, 440 Chlorine Ba₅Co₅ClO₁₃, synthesis, crystal structure, and magnetic and electrical properties, **158**, 175 BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, 162, 237 κ -(BETS)₂FeCl₄ with superconducting transitions, effect of halogen substitution, **159**, 407 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: $(BEDT-TTF)_4[Fe(NCS)_6] \cdot CH_2Cl_2$, **159.** 385 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281 Co(II) coordination polymer {[CoCl₂(btd)]}_n, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371 [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 CsSn₂Cl₅ compounds, cluster orbital formation in, **160**, 382 β -HfNCl, high-pressure synthesis and crystal structure, 159, 80 HgCl₂, mixture with (NH₄)Cl, reactivity with Monel containers, **162**, 254 [Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88 LaOCl, mechanochemical synthesis and solid state solutions, 160, 469 $Mg(ND_3)_2Cl_2$, uniaxial orientational order-disorder transitions, neutron diffraction study, **156**, 487 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225 (NH₄)Cl, mixture with HgCl₂, reactivity with Monel containers, **162**, 254 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, **162**, 254 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, 162, 254 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308 (RbCl)₁₀₈ clusters, crystal nucleation at 600, 550, and 500 K, molecular dynamics studies, **159**, 10 $[Ti_2Cl_9]^{-3}$, magnetic anisotropy, **159**, 268 β -ZrNCl, high-pressure synthesis and crystal structure, **159**, 80 Chromaticity diagram ${\rm SrIn_2O_4}$ phosphors emitting red light and activated by praseodymium, 156, 84 Chromium $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, **156**, 168 CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bi-pyrimidine)]·0.15H₂O, **159**, 385 Cr(VI) photoreduction to Cr(III) over nanosized Pd clusters deposited on titania-modified MCM-41, 162, 138 CrX_2 (X = O,S) layers, and MnF₅ chains, compounds consisting of, spin exchange parameters, **156**, 464 [Cr(CN)₆]₂[Ni(*L*)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302 (Cr,Fe)₂Ti_{n-2}O_{2n-1} crystallographic shear structure compounds, stability, **161**, 45 LnCrO₄ (Ln = Nd,Sm,Dy), magnetic and crystallographic properties, 160, 362 Cr₂O₃ microcrystal surface, tin probe ions on, impact of HF, Mössbauer study, **162**, 293 [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 [Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 (Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order–disorder transition under high-pressure and high-temperature conditions, **161**, 348 $Cu_{3+1.5x}Cr_{4-x}(VO_4)_6$, phase formation and crystal structures, 156, Fe₂O₃-Cr₂O₃-TiO₂, phase relations between 1000 and 1300°C, **161**, 45 GdCrO₃ perovskite, magnetic properties, 159, 204 K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195 (La,Ca)CrO₃, thermal expansion in, computer simulation, **156**, 394 La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84 Li(Mn,Cr)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 $Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3$, structural and electrochemical study, 158, 169 MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293 [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328 Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370 $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3,$ resistivity under magnetic field, increase by thermal cycling, $160,\,1$ $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198 Zn-Cr layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52 Circular dichroism α-nitronyl nitroxide radicals: chirality in solid state, **159**, 440 Clathrates $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233 C-line L-Ta₂O₅ and related structures, **160**, 62 Cluster excision $M_4\text{Cl}_8(\text{THF})_6 \ (M = \text{Fe,Co}), \ 159, \ 281$ Cluster models ionic conductivity of phosphorus oxynitride compounds, 161, 73 Cluster orbitals formation in $CsSn_2X_5$ compounds (X = Cl,Br), 160, 382 Cobalt Ba₅Co₅ClO₁₃, synthesis, crystal structure, and magnetic and electrical properties, **158**, 175 Ba_{1.1064}CoO₃, modulated composite structure with two subsystems, $(Ba_8Co_6O_{18})_a(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, **162**, 322 $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd), crystal structure and magnetic properties, **159**, 163 BaKCu₃CoS₄, electrical and magnetic properties, 157, 144 Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, **160**, 293 [Ca₂CoO₃][CoO₂]_{1.62}, misfit layer compounds, 4D structural study, **160**, 322 CaO polycrystals doped with, cellular paracrystal formation from, 161, 341 cobaltites(III) and cobaltites(IV) with perovskite or related structure, spin state behavior, **162**, 282 Co₃[BPO₇], synthesis and characterization, 156, 281 Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, **159**, 379 Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 Co₄Cl₈(THF)₆, compounds based on, structural and magnetic study, 159, 281 [Co(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, **159**, 343 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), phonon modes, **160**, 350 $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure, **159**, 239 A_x CoO₃ (A = Ca,Sr,Ba), magnetic properties, structural and electronic factors governing, **160**, 239 Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 [Co^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391 α -Co₂SiO₄- α -Ni₂SiO₄, vibrational spectroscopic study, **157**, 102 CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401 $T\text{Co}_2\text{Zn}_{20}$ (T = Zr,Hf,Nb) with $\text{CeCr}_2\text{Al}_{20}$ -type structure, **161**, 288 Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, 156, 242 Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204 $\text{Cu}_x \text{Co}_{1-x}(\text{HCOO})_2 \cdot 2\text{H}_2\text{O}$, crystal structure and thermal behavior, 157, 23 K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400 LaCoO₃, spin state transition depending on temperature or Sr doping, XAS study. 158, 208 (La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215 LiCo_{1-x}Fe_xO₂ system, lithium-ion conductors of, preparation and structure, **156**, 470 LiCoO₂ films, direct fabrication on substrates in flowing aqueous solutions at 150°C, 162, 364 Li(Mn,Co)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, **159**, 103 [(Me₃Sn)₃Co(CN)₆], metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, structure and magnetic properties, 159, outcome in nickel-cobalt oxyhydride electrodes of alkaline batteries, **162**, 270 polynuclear self-assembled Co(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308 $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324 SrCoO₃, electronic structure, 162, 282 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76 ${\rm Sr}_3{\rm Fe}_{2-x}{\rm Co}_x{\rm O}_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307 Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158 TlSr₂CoO₅, electronic structure, 162, 282 two-dimensional coordination polymers, topological control by π – π stacking interactions, **159**, 371 YBaCo₂O_{5+x} (0.00 \le x \le 0.52), oxygen nonstoichiometry, structures, and physical properties, **156**, 355 Colossal magnetoresistance $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117 Combustion during mechanical alloying, mechanism, 158, 268 Complex impedance fluoroapatite and hydroxyapatite materials, comparison, 156, 57 Conformational diastereoisomerism α-nitronyl nitroxide radicals in solid state, 159, 440 Coordination complex [$\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}$], hydrothermal synthesis and crystal structure, **161**, 173 Coordination polymers Co(II), Cu(II), and Ni(II) with bis(*trans*-4-pyridylacrylate), hydrothermal syntheses and crystal structures, **157**, 166 Co(II), two-dimensional, topological control by π - π stacking interactions. **159**, 371 Cu(II) networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315 [M(dicyanamide)₂pyrazine] (M = Mn,Fe,Co,Ni,Zn), synthesis, structural isomerism, and magnetism, **159**, 352 noncluster vanadium(IV), solvothermal synthesis, crystal structure, and ion exchange, **160**, 118 Copper AgCuO₂, synthesis, crystal structure, and structural relationships with CuO and Ag^IAg^{III}O₂, **162**, 220 Ag₂Cu₂O₃, high-pressure synthesis and electrochemistry, 158, 82 BaCuO₂, structure simulation using interatomic potentials, 158, 162 BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101 BaCu₂Te₂, structure and physical properties, 156, 44 $BaKCu_3MS_4$ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution. 161, 184 Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39 Bi₂Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}, suppression of modulations in, 156, 445 Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 CaCuO₂ and Ca₂CuO₃, structure simulation using interatomic potentials, **158**, 162 Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 CsLa₂CuSe₄, synthesis, structure, and physical properties, 158, 299 CsSm₂CuSe₄, synthesis, structure, and physical properties, 158, 299 Cu⁺, low coordination in chalcogenide environments, **160**, 212 [CuAl] layered double hydroxide, platinum complex intercalation into, **161.** 332 [{Cu(2,2'-bpy)₂}₂Mo₈O₂₆], hydrothermal synthesis and crystal structure, 161, 173 Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 Cu(II) complexes with imino nitroxyl diradical, magnetic properties, **159**, 455 Cu(II) coordination networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315 (Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order-disorder transition under high-pressure and high-temperature conditions, 161, 348 $CuM^{IV}F_6$ ($M^{IV} = Pd,Pt,Sn$), preparation, magnetic properties, and pressure-induced transitions, 162, 333 $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, 157, 23 $\lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil \lceil \{Cu_2Br_4\} \rceil$ and $\lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil$ [{Cu₅Br₇}], hydrothermal synthesis and X-ray crystal structure, **158.** 55 CuInS₂ nanorods, hydrothermal synthesis and characterization, 161, 179 CuO, structural relationship with AgCuO₂, 162, 220 CuM_2O_6 (M = Sb,V,Nb), anisotropic spin exchange interaction in, spin dimer analysis, 156, 110 $MA_2QCu_2O_{6+z}$ (M = Cu,Hg,Tl/Pb; A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, 162, 1 $\begin{array}{l} \big[Cu_{12}Ln_{6}(\mu_{3}\text{-}OH)_{24}(C_{5}H_{5}NCH_{2}CO_{2})_{12}(H_{2}O)_{18}(\mu_{9}\text{-}NO_{3}) \big] (PF_{6})_{10} \\ (NO_{3})_{7} \cdot 12H_{2}O \ (\mathit{Ln^{III}} = Sm^{III},Gd^{III}), \ \text{synthesis and characterization,} \end{array}$ 161, 214 Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278 cuprate superconductors, anionic charge order model, 158, 139 [Cu^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, 159, 391 CuSe and Cu₃Se₂ thin films, chemical deposition and characterization, 158, 49 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, 161, 327 $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), phase formation and crystal structures, 156, 339 Eu₂O₃-SrO-CuO system, compounds and phase relations, 156, 247 fluorinated Nd₂CuO₄, HREM study, 157, 56 Gd₃Cu₂Te₇, synthesis and structure, **159**, 186 Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa₂Cu₃O_{8+δ} superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, 161, 355 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, **160**, 409 La₈Cu₇O₁₉ five-leg spin ladder compound, crystal growth, structure, and transport properties, 156, 422 La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-δ}, oxidation states of Cu and Ru in, determination by XANES measurements, 156, 194 Li₃CuSbO₅, crystal structure, 156, 321 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), synthesis and crystal structure, 160, 251 Nd₂BaCuO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, 162, 254 oxidation state in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, 156, 194 polynuclear self-assembled Cu(II) cluster complexes, synthesis, structure, and magnetism, 159, 308 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, 160, 409 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299 Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299 RbNd₂CuS₄, synthesis, structure, and physical properties, 158, 299 RbSm₂CuS₄, synthesis, structure, and physical properties, 158, 299 Sr_{1.19}Ca_{0.73}Cu₂O₄, structure simulation using interatomic potentials, **158,** 162 SrCuO₃, structure simulation using interatomic potentials, 158, 162 U₂Cu_{0.78}Te₆, synthesis and structure, **159**, 186 YCuO_{2+x} delafossite, fine structure determination by synchrotron powder diffraction and electron microscopy, 156, 428 Coprecipitation amino acid intercalation into layered double hydroxides, 162, 52 Crystal chemistry $Na_xMnO_{2+\delta}$ prepared by reduction of aqueous sodium permanganate by sodium iodide, 156, 331 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158,** 307 Crystal field calculations Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42 Crystal field stabilization energy α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102 Crystal growth $Ca_{2-x}Sr_xRuO_4$ single crystals, 156, 26 CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25 floating zone, $ScB_{19+x}Si_y$, **160**, 394 La₈Cu₇O₁₉ five-leg spin ladder compound, **156**, 422 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z = 0.075) single crystals, **160**, 178 SrBi₂Se₄, **156**, 230 relationship to bond length in boehmite, 159, 32 role in thermal evolution of boehmite, 161, 319 Crystallization Crystallite size Bi_{3.5}V_{1.2}O_{8.25} in triclinic symmetry, **161**, 410 $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39}$, **161**, 85 β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, induction by laser impact, 157, 94 MoS₂ at different pressures, **159**, 170 V₂O₅ nanocrystals, **159**, 181 ZrO₂ in sol-gel system, 158, 349 Crystallographic properties $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362 Crystallographic shear structure compounds $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$, stability, **161**, 45 Crystal morphology α-MnO₂ open tunnel oxide precipitated by ozone oxidation, 159, 94; erratum, 160, 292 Crystal nucleation (RbCl)₁₀₈ clusters at 600, 550, and 500 K, molecular dynamics studies, **159,** 10 Crystal orbital Hamiltonian population function TlTe, 157, 193 Crystal structure AgCuO₂, 162, 220 REAgMg (RE = La, Ce, Nd, Eu, Gd, Tb, Ho, Tm, Yb), 161, 67 Al(CN)₃, 159, 244 alkaline earth cuprates, simulation using interatomic potentials, 158, 162 AlO(OH)· αH₂O monoclinic nanocrystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40 BaAl₂O₃(OH)₂·H₂O with six-membered rings, **161**, 243 Ba₄CeNb₁₀O₃₀ with TTB-type structure, **157**, 1 Ba₅Co₅ClO₁₃, **158**, 175 Ba_{1,1064}CoO₃, modulated composite structure with two subsystems, **161,** 300 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101 BaCu₂Te₂, 156, 44 $BaFeO_{2.8-\delta}$ prepared from oxidative thermal decomposition of BaFe[(CN)₅NO]·3H₂O, ab initio solution, **160**, 17 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144 ``` n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO} (n = 2-5; m = 1), single-crystal X-ray diffrac- CsLa₂CuSe₄, 158, 299 tion studies, 156, 75 Cs₃P₆N₁₁, 156, 390 BaNd₂MnS₅, 159, 163 CsSm₂CuSe₄, 158, 299 CsSn_2X_5 compounds (X = Cl,Br): cluster orbital formation, 160, 382 Ba₃NdRu₂O₉ 6H-perovskite, 161, 113 BaLn_2MS_5 (Ln = La,Ce,Pr,Nd; M = Co,Zn), 159, 163 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 BaV₁₃O₁₈, 158, 61 [\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}], 161, 173 BaZnCl₄-II:Sm²⁺, comparison to BaZnCl₄-I:Sm²⁺, 162, 237 Cu(C_8H_6NO_2)_2(H_2O)_2 interpenetration networks, 157, 166 ReB_{22}C_2N (Re = Y,Ho,Er,Tm,Lu), 159, 174 Cu(II) coordination networks with chessboard tunnels, 158, 315 Be(CN)2, 159, 244 Cu_{4.05}Cr_{3.3}(VO₄)₆, 156, 339 Cu_{2.5}Fe_{4.333}(VO₄)₆, 156, 339 Bi_{4.86}Li_{1.14}O₉, ab initio determination from powder neutron diffraction data, 162, 10 Cu_4Fe_{3.333}(VO_4)_6, 156, 339 BiMn₆PO₁₂, 157, 123 Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O (M = Mn,Co,Ni,Cd), 157, 23 Bi_{2.5}Me_{0.5}Nb_2O_9 (Me = Na,K), powder neutron diffraction study, 157, [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] and [Cu(H_2NCH_2CH_2NH_2)_2] [\{Cu_5Br_7\}], 158, 55 [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10} Bi_{1.1}Sb_{0.9}MoO₆, 159, 72 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161, (NO_3)_7 \cdot 12H_2O (Ln^{III} = Sm^{III},Gd^{III}), 161, 214 Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32} thiospinel, 161, 327 ABi_2Ta_2O_9 (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, 160, N,N'-dimethylpiperazinium(2+) hydrogen selenite, 161, 312 Dy₃Si₂C₂, 156, 1 CaAlGaO₄ and Ca₂AlGaO₅, 157, 62 Eu₂GeS₄: evidence for ferroelectricity, 158, 343 Ca_3Co_{1+x}Mn_{1-x}O_6 quasi-one-dimensional oxides, 160, 293 Eu₄Mo₇O₂₇ and Eu₆Mo₁₀O₃₉, 161, 85 [Ca2CoO3][CoO2]1.62 misfit layer compounds, analysis in 4D super- Eu₂O₃-SrO-CuO system-derived solid solutions and compounds, 156, space formalism, 160, 322 Ca₃CuMnO₆ quasi-one-dimensional oxides, 160, 293 α-Fe₂O₃, effect of Zn doping, 156, 408 calcium-deficient carbonated hydroxyapatite, 160, 340 FeSb₂S₄, 162, 79 Ca_2MnGaO_{5+\delta}, 158, 100 fluoroaluminophosphate chain AlPO-CJ10, 161, 259 Ca₂NF single crystals, 160, 134 fluorocyclohexane/thiourea inclusion compounds, temperature-depen- Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, 160, 415 dent properties, 156, 16 Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group assignment, 160, 8 Gd₃Cu₂Te₇, 159, 186 Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, 161, 274 Gd₄TiSe₄O₄, 162, 182 ACa_9(VO_4)_7 (A = Bi,rare earth), 157, 255 γ-GeP₂O₇, 156, 213 Ca_{1-x}Y_xMnO₃, phase characterization, 156, 458 goethite, change in methane oxidation, in situ XRD and IR study, CdBa₃(HPO₄)₂(H₂PO₄)₂, 161, 97 156, 225 Cd(CN)_2 \cdot 2/3H_2O \cdot t-BuOH, 156, 51 \beta-HfNCl under high pressure, 159, 80 M_4\text{Cd}_2(\text{C}_2\text{O}_4)_4 \cdot 4\text{H}_2\text{O} (M = \text{Na}, \text{K}), open-framework structure, 162, (Hg_3)_2(HgO_2)(PO_4)_2, 157, 68 150 (Hg_3)_3(PO_4)_4, 157, 68 Cd(VO_2)_4(SeO_3)_3 \cdot H_2O, 161, 23 [Hg₆P₄](TiCl₆)Cl, 160, 88 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thio- Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta} superconductors grown by sol-gel cyanato-complex anions, 159, 385 and sealed quartz tube synthesis, 161, 355 [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] and [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3 Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, 158, 94 (HPO_4)_2(H_2O)_2], 157, 233 (H_2O)[V_2^{III}F_6] and Pyr-VF₃ of pyrochlore type, 162, 266 [(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], 159, 209 In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with 0.50 \le x \le 0.69 and C₅H₁₂NPO₄H₂, 161, 307 monoclinic phase with 0.73 \le x \le 0.75 at 1300^{\circ}C in air, 157, 13 C₁₀H₂₈N₄P₄O₁₂·4H₂O, 156, 364 K_4[Cd_3(HPO_4)_4(H_2PO_4)_2], layered structure, 162, 188 (C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O, 158, 87 K₃Cr₂P₃S₁₂ one-dimensional compounds, 162, 195 M_4\text{Cl}_8(\text{THF})_6-based compounds with M = \text{Mn,Fe,Co, 159, 281} K_3Ln_4Cu_5Te_{10} (Ln = Sm,Gd,Er), 160, 409 (C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O, layer structure, 162, 168 δ-KMo₂P₃O₁₃, revised space groups, 159, 7 [C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes, KSmP₂S₇, 160, 195 157, 110 K_2TiSi_6O_{15} with corrugated [Si_6O_{15}]_{\infty\infty} layers, 156, 135 Co₃[BPO₇], 156, 281 La₂Ca₂MnO₇, 156, 237 Co(C₈H₆NO₂)₂ interpenetration networks, 157, 166 La₈Cu₇O₁₉ five-leg spin ladder compound, 156, 422 Co(II) coordination polymers {[CoBr_2(2,1,3-benzothiadiazole)]}_n and ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, 162, 250 [CoCl_2(btd)]_n, 159, 371 La₂₄Li₂₀Ti₅O₅₆, pseudo-close-packed columnar intergrowth structure, Co(H_2O)_2O_2CC_6H_4CO_2, 159, 343 162, 379 Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH, 159, 239 LaMn_{1-x}Li_xO₃ perovskites, 159, 68 LaMnO_{3+\delta}, 160, 123 Co₂(OH₂)O₂CC₆H₄CO₂, 159, 343 LnCrO_4 (Ln = Nd,Sm,Dy), 160, 362 La₂Mo₄O_{1.5}, ab initio determination from X-ray and neutron powder \alpha-CsB₅O₈ and \gamma-CsB₅O₈, 161, 205 diffraction, 159, 228 CsBSe₃, 157, 206 La_4Ti_2O_4Se_5 and La_6Ti_3O_5Se_9, 157, 289 Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242 MLa_2Ti_2TaO_{10} (M = Cs,Rb) layered perovskites, 158, 290 Cs₂CoSiO₄ and Cs₅CoSiO₆, 162, 204 α-La₂W₂O₉, ab initio determination from X-ray and neutron powder CsGd₂Ag₃Se₅, 158, 299 diffraction, 159, 223 \text{Li-}M-X systems (M = \text{V,Nb,Ta}; X = \text{P,As}), 156, 37 Cs₃Gd₄Cu₅Te₁₀, 160, 409 CsH₅(AsO₄)₂, comparison with CsH₅(PO₄)₂ and RbH₅(AsO₄)₂, 161, 9 Li₈Al₃Si₅-type, in Al-Li-Si system, 156, 500 ``` ``` LiCo_{1-x}Fe_xO_2 system, 156, 470 Pb₃O₂(OH)(NO₃), 158, 78 Li₃CuSbO₅, 156, 321 Pb₁₃O₈(OH)₆(NO₃)₄, 158, 74 Li₂Mn₂(SO₄)₃, 158, 148 PbVOP₂O₇, intersecting tunnel structure, 162, 354 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO₄)₃, 158, 169 \text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2 (z = 0.075) single crystals, 160, 178 Li₂Yb₅O₄(BO₃)₃ discovered in Li₂O-Ln₂O₃-B₂O₃ phase diagram, 156, [(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O] and [(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O] 2H₂O₇, 157, 324 \text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29 Pr₃Si₂C₂, 156, 1 Mg(CN)₂, 159, 244 Pr_{0.7-x□}Sr_{0.3}MnO₃ perovskites, effect of Pr deficiency, 156, 68 Mg_{1-x}Cu_{2+x}O_3 (0.130 \leq x \leq 0.166), 160, 251 \beta-RbB₅O₈, 161, 205 MgPd₂, MgPd₃, and Mg₃Pd₅, 159, 113 RbBSe₃, 157, 206 Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32 Rb₂CdSiO₄, 162, 214 Rb_3Ln_4Cu_5Te_{10} (Ln = Nd,Gd), 160, 409 α-MnO₂ open tunnel oxide precipitated by ozone oxidation, 159, 94; RbEr₂Cu₃S₅, 158, 299 erratum, 160, 292 [Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space Rb₂Gd₄Cu₄S₉, 158, 299 groups, 159, 7 RbNd₂CuS₄, 158, 299 Mo-Ni-P ternary phases, 160, 156 Rb_{1.12}(NH₄)_{0.88}SO₄·Te(OH)₆ at 435 K, 161, 1 mono-L-valinium nitrate, 158, 1 Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7 Ln_3T_2N_6 (Ln = La, Ce, Pr; T = Ta, Nb), 162, 90 Rb₃P₆N₁₁, 156, 390 NaCa₂GeO₄F, 160, 33 RbSm₂CuS₄, 158, 299 Na_{1.1}Ca_{1.8}Mn₉O₁₈, 162, 34 Re₃O₁₀, 160, 317 Na₃Cr₂P₃S₁₂ one-dimensional compounds, 162, 195 rhodamine B in lactone form, 156, 325 Na₃Fe(PO₄)₂, glaserite-like structure, 160, 377 R_3 Ru_2 C_5 (R = Y,Gd-Er), 160, 77 Na₉Gd₅Sb₈S₂₆, 161, 129 Sb₂O(CH₃PO₃)₂, layered structure, 162, 347 NaHPO₃F · 2.5H₂O, 156, 415 LnSbS_2Br_2 (Ln = La,Ce), 158, 218 ScB_{19+x}Si_y, 160, 394 Na₂In₂[PO₃(OH)]₄·H₂O, 157, 213 NaLa₆(Os)I₁₂, 161, 161 REE_2Si_2O_7 (REE = Nd_Sm_Eu_Gd), type K structure at high pressure, NaLa_2Ti_2TaO_{10} \cdot xH_2O \ (x = 2,0.9,0) layered perovskites, 158, 290 161, 166 Na₂MgInF₇, 159, 234 Sn_{10}In_{14}P_{22}I_8 and Sn_{14}In_{10}P_{21,2}I_8 with clathrate I structure, 161, Na_xMnO_{2+\delta} prepared by reduction of aqueous sodium permanganate by sodium iodide, 156, 331 Sn_{1+x}Nb_2O_{6+x} (x = 0.0,0.5,1.0), synthesis and characterization, 156, Na_2NbF_6-(Nb_6Br_4F_{11}), 158, 327 349 Na₂PO₃F·10H₂O, 156, 415 SrBi₂Se₄, 156, 230 Na_2M_3Sb_4 (M = Sr,Ba), 162, 327 (Sr_{1-x}Ca_x)TiO_3 with composition (x): evolution of crystallographic NaSmP₂S₆, 160, 195 phases, 162, 20 NaYbP₂S₆, 160, 195 Sr_2CoSbO_{6-\delta} and Sr_3CoSb_2O_9 perovskites, 157, 76 NaYFPO₄, 157, 8 Sr₂Fe₂O₅ at elevated temperature, 156, 292 Nb₆Br₈F₇, 158, 327 SrFe_2(PO_4)_2 and Sr_9Fe_{1.5}(PO_4)_7, 162, 113 Nb₂₈Ni_{33.5}Sb_{12.5}, 160, 450 Sr₃Ga₂O₆, 160, 421 (NC₅H₁₂)₂ · Zn₃(HPO₃)₄ low-density framework built up from fully con- Sr₁₀Ga₆O₁₉, 160, 421 nected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, powder X-ray and neutron diffraction 160, 4 studies, 157, 283 M[N(CN)_2]_2 (M = Mg,Ca,Sr,Ba), 157, 241 (Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2} (0.01 \leq x \leq 0.03), 159, 19 Nd_{1-x}Ca_xCrO_4 (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, Sr_2MnGaO_{5+\delta}, 160, 353 156, 370 Sr₇Re₄O₁₉, 160, 45 (ND₄)₄D₂(SeO₄)₃ below 180 K, 160, 189 Sr₂ScBiO₆, 162, 142 [Nd(XeF_2)_{2.5}](AsF_6)_3, 162, 243 Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, effects of metal-metal sigma bonding, 162, 103 neptunium-germanium binary system, 156, 313 SrTiO₃-SrZrO₃ solid solution, 156, 255 (NH_4)[Ce^{IV}F_2(PO_4)], 157, 180 Tb₃Si₂C₂, 156, 1 [NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2] (x = 1.65), 159, Th₃Co₃Sb₄, 162, 158 Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O Ti₄(HPO₄)₂(PO₄)₄F₂· and (NH₄)₅Cl₂[CuCl₂][CuCl₄], 162, 254 C_2N_2H_{10} \cdot H_2O, 162, 96 NH_4Ln_3F_{10} (Ln = Dy,Ho,Y,Er,Tm), 158, 358 Ti₆Pb_{4.8}: short Pb-Pb bonds, 159, 134 (NH₄)₄H₂(SeO₄)₃ below 180 K, 160, 189 Ti_{11}(Sb,Sn)_8, 157, 225 (NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4], 162, 254 \beta-Tl₂B₄O₇ containing three-dimensional borate anion, 160, 139 NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, 162, 347 TIBSe₃, 157, 206 (NH_4)_7U_6F_{31}, 158, 87 TlFeO₃, distortion, comparison with AFeO₃ (A = rare earth), 161, 197 (NH_4)_4[Zn_4Ga_4P_8O_{32}] and (NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}], 156, 480 Tl^ITl^{III}(CN)₄, 159, 244 Ni(C_8H_6NO_2)_2(H_2O)_2 interpenetration networks, 157, 166 TPnCh (T = Ni,Pd; Pn = P,As,Sb; Ch = S,Se,Te), 162, 69 Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, 158, 68 U₂Cu_{0.78}Te₆, 159, 186 noncluster vanadium(IV) coordination polymers, 160, 118 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55; erratum, 161, 177 A'[A_2B_3O_{10}] (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type YCuO_{2+x} delafossite, fine structure determination by synchrotron layered perovskites, 158, 279 powder diffraction and electron microscopy, 156, 428 Ln_2O_2CO_3 II (Ln = La, Nd), 158, 14 Y₃Si₂C₂, 156, 1 ``` TT'_2 Zn₂₀ (T = Zr,Hf,Nb; T' = Mn,Fe,Ru,Co,Rh,Ni): CeCr₂Al₂₀-type Delafossite structural relationship to $In(Fe_{1-x}Ti_x)O_{3+x/2}$: at 1300°C in air, 157, 13 structure, 161, 288 β -ZrNCl under high pressure, **159**, 80 YCuO_{2+x}, fine structure determination by synchrotron powder diffrac-Crystal twinning tion and electron microscopy, 156, 428 fluorocyclohexane/thiourea inclusion compounds, 156, 16 Density functional theory Curie-Weiss relation ionic conductivity of phosphorus oxynitride compounds, 161, 73 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 spin state behavior of cobaltites(III) and cobaltites(IV) with perovskite Cyanide or related structure, 162, 282 Al(CN)₃, synthesis and structural properties, 159, 244 TITe, 157, 193 BaFeΓ(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} YNbO₄ and YNbO₄:Bi, 156, 267 prepared from, ab initio structure solution, 160, 17 Deuterium Be(CN)₂, synthesis and structural properties, 159, 244 Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order-disorder $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 transitions, neutron diffraction study, 156, 487 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge trans- $(ND_4)_4D_2(SeO_4)_3$, crystal structure below 180 K, **160**, 189 fer processes with spin transition, 159, 336 Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction [$M(dicyanamide)_2$ pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, strucstudies, 161, 93 tural isomerism, and magnetism, 159, 352 Diastereoisomerism K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by therconformational, α-nitronyl nitroxide radicals in solid state, 159, 440 mal treatment, 156, 400 Dicyanamide $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), metathesis reactions with tetra- $[M(dicyanamide)_2 pyrazine]$ (M = Mn,Fe,Co,Ni,Zn), synthesis, strucpropylammonium and -phosphonium ions, 157, 324 tural isomerism, and magnetism, 159, 352 Mg(CN)₂, synthesis and structural properties, 159, 244 Dielectric properties MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, effects of type of cation ordering, chain compound, magnetic properties, 159, 293 **156,** 122 $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, **161**, 274 amide, n = 2.5), 3D network structure, magnetic properties, and Pb₅Ta₁₀O₃₀, effect of cationic substitutions, 157, 261 relevance to Prussian blue analogue, 159, 328 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, 161, 1 $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ V₂O₃, **159**, 41 (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, Dielectrics 328 Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, 160, 257 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, Differential scanning calorimetry and crystal structure, 157, 241 Bi₂TeO₅ oxidation, **161**, 365 pentanuclear complexes bridged by, with high spin ground states S = 6CsH₅(AsO₄)₂, 161, 9 and S = 9, characterization and magnetic properties, 159, 302 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ $\lceil (n Pr_4 N)(Me_3 Sn)_2 Ir(CN)_6 \cdot 2H_2 O \rceil$ and $\lceil (n Pr_4 P)(Me_3 Sn)_2 Co(CN)_6 \cdot 2H_2 O \rceil$ mono-L-valinium nitrate, 158, 1 2H₂O₇, crystal structures, 157, 324 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, 161, 1 Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244 Differential thermal analysis Cyclopentadienyl LiKSO₄, 148, 316; comments, 156, 251, 253 Cp₂Mo(dmit) with Br or BF₄, isolated dimers and ordered antifer-Diffuse scattering romagnetic ground state, 159, 413 in K₂In₁₂Se₁₉, **161**, 385 N,N'-Dimethylpiperazinium(2+) hydrogen selenite D preparation, crystal structure, vibrational spectra, and thermal behavior, **161.** 312 Decamethylmetallocenium cations 2,2-Dinitropropane-1,3-diol layered molecule-based magnets formed by, 159, 391 structure-energy changes, induction by temperature variations, 157, Decomposition 296 Bi_{3.5}V_{1.2}O_{8.25}, **161**, 410 Dion-Jacobson-type perovskites MgF₂ in transmission electron microscope, 157, 30 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) and $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0), molecular, in synthesis of yttria-stabilized zirconia nanoparticles, 157, structure, 158, 290 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta), synthesis, structure, thermal, see Thermal decomposition and electrical conductivity, 158, 279 Defect chemistry model pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , 160, 25 LiVO₃ structure, neutron powder diffraction study from 340 to 890 K, Defect structure **156,** 379 Al defect in Al-doped Sm-123 high-temperature superconductor, elec-Dispersion tron density study, 161, 396 NiO on γ -Al₂O₃ and TiO₂/ γ -Al₂O₃ supports, **157**, 274 anion-excess fluorite-related phases in LnOF-LnF₃ systems (Ln = Nd, Sm, Eu, Gd), 157, 134 $Dy(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350 Ni²⁺- and Mn²⁺-doped sol-gel SiO₂ glass, 160, 272 DyCrO₄, magnetic and crystallographic properties, 160, 362 Dy₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77 induction of charge transfer processes with spin transition on Dy₃Si₂C₂, subcell and superstructure, **156**, 1 CoFe(CN)₅NH₃·6H₂O, 159, 336 KDyTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225 NH₄Dy₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 electrochemical, Ag₂Cu₂O₃, **158**, 82 Deintercalation Ε Editorial special issue honoring Paul Hagenmuller, 162, 149 Electrical conductivity AC, in antiferromagnetic insulating phase of V_2O_3 system, 159, 41 $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, **162**, 250 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66, 0.55), **161,** 294 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, **158**, 279 $R_3 \text{Ru}_2 \text{C}_5$ (R = Y,Gd-Er), **160**, 77 SrFeO_v at high temperature, 158, 320 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177 Electrical properties Ba₅Co₅ClO₁₃, 158, 175 BaCu₂Te₂, 156, 44 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, **161**, 327 fluoroapatite and hydroxyapatite materials, comparison, 156, 57 Na_{1.1}Ca_{1.8}Mn₉O₁₈, 162, 34 Pr_{0.7-x□}Sr_{0.3}MnO₃ perovskites, effect of Pr deficiency, 156, 68 SrBi₂Se₄, 156, 230 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, 157, 76 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158,** 307 Th₃Co₃Sb₄, 162, 158 Electrical resistivity $Ce_2Ni_{22}C_{2.75}$, **161**, 63 HgBr₂ intercalated Bi₂Sr₂CaCu₂O_y single crystal, polarized X-ray absorption spectroscopy, **160**, 39 La₈Cu₇O₁₉ five-leg spin ladder compound, **156**, 422 $Na_2M_3Sb_4$ (M = Sr,Ba), **162**, 327 Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃ under magnetic field, increase by thermal cycling, **160**, 1 Ln_3 RuO₇ (Ln =Sm,Eu), **158**, 245 Ti₁₁(Sb,Sn)₈, **157**, 225 Electrochemical cycling Si-doped $\mathrm{SnO_2}$ -lithium thin-film battery, microstructural evolution in, 160, 388 Electrochemistry Ag₂Cu₂O₃, 158, 82 Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO₄)₃, **158**, 169 Electroluminescence molecularly doped polymer system, 158, 242 Electron counts in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), 160, 93 Electron density study structure of Al defect in Al-doped Sm-123 high-temperature superconductor, **161**, 396 Electron diffraction $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$ polysomatic series, **162**, 322 Ca_{0.5}Sr_{0.5}TiO₃ perovskite: space group and structure, 160, 8 K₂In₁₂Se₁₉, **161**, 385 α -MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; erratum, **160**, 292 $Ni_{1+x}Se_2$ and $Ni_{1+x}Te_2$ $CdI_2/NiAs$ type solid solution phases, 161, nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, **161**, 31 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161.** 135 rare earth sesquioxide-stabilized cubic zirconias: strain-driven pyrochlore to defect fluorite phase transition, **159**, 121 (Sr_{1-x}Ca_x)TiO₃ with composition (x): evolution of crystallographic phases, **162**, 20 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19 temperature-dependent, symmetry characterization of 3-D incommensurately modulated cubic phase in ZrP₂O₇, **157**, 186 Electron energy loss spectroscopy MgF₂ decomposition in transmission electron microscope, **157**, 30 Electronic properties $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, due to Co ions, **159**, 215 Electronic structure AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93 Cs₂CoSiO₄ and Cs₅CoSiO₆, **162**, 204 HgBr₂ intercalated Bi₂Sr₂CaCu₂O_y single crystal, polarized X-ray absorption spectroscopy, **160**, 39 [Hg₆P₄](TiCl₆)Cl, **160**, 88 Li-M-X systems (M = V,Nb,Ta; X = P,As), 156, 37 Li_{1+x}V₃O₈ prepared by mechanochemical synthesis, **160**, 444 $LnSbS_2Br_2$ (Ln = La,Ce), **158**, 218 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, 161, 233 SrCoO₃, **162**, 282 Ti₆Pb_{4.8}, **159**, 134 TlSr₂CoO₅, 162, 282 TITe, 157, 193 tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, 159, 428 $Yb_5In_2Sb_6$ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177 $YNbO_4$ and $YNbO_4$:Bi, **156**, 267 Electron microdiffraction (Sr_{1-x}Ca_x)TiO₃ with composition (x): evolution of crystallographic phases, **162**, 20 Electron microscopy, see also High-resolution electron microscopy α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; *erratum*, **160**, 292 $A_x Mo_y W_{1-y} O_3$ (A = K,Ce) intergrowth tungsten bronzes, 162, 341 YCuO_{2+x} delafossite: fine structure determination, **156**, 428 Electron paramagnetic resonance Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371 $\text{Li}_{1+x}\text{V}_3\text{O}_8$: reduction processes in mechanochemical synthesis, **160**, 444 Pr^{4+} ions doped in BaHfO₃ perovskite, **156**, 203 Electron probe microanalysis Mo-Ni-P ternary phases, 160, 156 nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, 161. 31 Energy-dispersive X-ray diffraction $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite: lattice distortion under high pressure, **160**, 307 Energy-dispersive X-ray spectroscopy Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135 Enthalpy of formation lead zirconate titanate solid solution, 161, 402 Epitaxial films AgS₂, growth on cleaved surface of MgO(001), 157, 86 $La_{1-x}Sr_xMnO_{3+\delta}$, excess oxygen in, **156**, 143 PZT pyrochlores, support-promoted stabilization, 158, 40 EPR, see Electron paramagnetic resonance Erbium ErB₂₂C₂N, synthesis and crystal structure, 159, 174 ErCa₉(VO₄)₇, synthesis and structure, **157**, 255 $AErO_3$ (A=La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 Er₃Ru₂C₅, preparation, properties, and crystal structure, **160**, 77 K₃Er₄Cu₅Te₁₀, synthesis and structure, **160**, 409 NH₄Er₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, **158**, 299 Ethanol thermal route preparation and morphology control of rod-like nanocrystalline tin sulfides, **161**, 190 Ethylenediamine $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$ Europium $\text{Eu}_5 T t_3$ (T t = Si, Ge, Sn) compounds with $\text{Cr}_5 B_3$ -like structures, hydrogen impurity effects in, **159**, 149 EuAgMg, synthesis and crystal structures, 161, 67 EuCa₉(VO₄)₇, synthesis and structure, 157, 255 Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343 $\rm Eu_4Mo_7O_{27}$ and $\rm Eu_6Mo_{10}O_{39},$ crystallization and structural characterization, $161,\,85$ EuOF-EuF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, 157, 134 Eu₂O₃-SrO-CuO system, compounds and phase relations, 156, 247 EuPd₃S₄, Mössbauer effects and magnetic properties, **157**, 117 Eu₃RuO₇, magnetic and thermal properties, 158, 245 Eu₂Si₂O₇, type K structure at high pressure, **161**, 166 KEuTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225 EXAFS, see Extended X-ray absorption fine structure Exchange splittings Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42 Extended Hückel tight binding calculations spin state behavior of cobaltites(III) and cobaltites(IV) with perovskite or related structure, 162, 282 Extended networks three-dimensional, formation by self-assembly of molecular magnets, **159**, 262 Extended X-ray absorption fine structure $W_x Mo_{(1-x)}S_2$, lamellar solid solutions: detection of two cation disulfide layers, **160**, 147 Zn doping effects on α -Fe₂O₃, **156**, 408 F Faradaic efficiency $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), **156**, 437 Far-infrared spectroscopy phonon modes of $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La, Nd, Dy, Ho, Yb), **160**, 350 Fermion materials heavy, CeIrIn₅ and CeRhIn₅, crystal growth and intergrowth structure, **158**, 25 Ferrimagnets [Mn(L)]₃[Cr(CN)₆]₂·nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 Ferrite-superconductor composites thermally treated multiphase materials, chemical degradation, **160**, 332 Ferroelectric oxides $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba), cation disorder in, **160**, 174 Ferroelectric properties Eu₂GeS₄, structural evidence, 158, 343 Pb₅Ta₁₀O₃₀, effect of cationic substitutions, 157, 261 Ferroelectrics lead-free relaxors, solid state chemistry, 162, 260 PZT pyrochlore epitaxial films, support-promoted stabilization, **158**, 40 quantum, $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20 Ferromagnetic coupling polynuclear self-assembled Cu(II) cluster complexes, 159, 308 Ferromagnetic interaction between paramagnetic metal ion and coordinated ligand in metal complexes with imino nitroxyl diradical, **159**, 455 Ferromagnetic ordering CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34 short-range, $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 Ferromagnetic transition $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117 Ferromagnetism $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, 159, 302 $LaMn_{1-x}Li_xO_3$ perovskites, **159**, 68 Films epitaxial, see Epitaxial films $LiCoO_2$, direct fabrication on substrates in flowing aqueous solutions at $150^{\circ}C$, 162, 364 Floating zone crystal growth $ScB_{19+x}Si_{v}$, **160**, 394 Fluorination Bi-2201 phases, suppression of modulations, 156, 445 Nd₂CuO₄, HREM study, 157, 56 Fluorine AlF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux. 161, 80 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, **156**, 445 Ca_2NF , preparation and single-crystal structure analysis, **160**, 134 (C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 (C₂H₁₀N₂)Zr₂F₁₀⋅ H₂O and (C₄H₁₂N₂)ZrF₆⋅ H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 $[Cp_2Mo(dmit)][BF_4^-]$, association into dimers, 159, 413 $\begin{array}{l} \big[\text{Cu}_{12} L n_6 (\mu_3\text{-OH})_{24} (\text{C}_5 \text{H}_5 \text{NCH}_2 \text{CO}_2)_{12} (\text{H}_2 \text{O})_{18} (\mu_9\text{-NO}_3) \big] (\text{PF}_6)_{10} \\ (\text{NO}_3)_7 \cdot 12 \text{H}_2 \text{O} \ (L n^{\text{III}} = \text{Sm}^{\text{III}}, \text{Gd}^{\text{III}}), \text{ synthesis and characterization,} \\ \textbf{161} \ \ 214 \end{array}$ F⁻, chemical treatment of silica xerogels catalyzed by, **162**, 371 $M^{\rm II}M^{\rm IV}$ F₆ ($M^{\rm II}$ = Ni,Pd,Cu; $M^{\rm IV}$ = Pd,Pt,Sn), preparation, magnetic properties, and pressure-induced transitions, **162**, 333 fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, **161**, 259 HF, impact on tin probe ions located on ${\rm Cr_2O_3}$ microcrystal surface, Mössbauer study, 162, 293 (H₂O)[V₂^{III}F₆] and Pyr-VF₃ of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266 MgF₂, decomposition in transmission electron microscope, 157, 30 MnF₅ chains, and CrX_2 (X = O,S) layers, compounds consisting of, spin exchange parameters, **156**, 464 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225 NaCa₂GeO₄F, synthesis and structure, **160**, 33 NaHPO₃F · 2.5H₂O, synthesis and crystal structure, 156, 415 Na₂MgInF₇, crystal structure, **159**, 234 Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327 Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415 NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8 Nb₆Br₈F₇, synthesis and crystal structure, **158**, 327 [Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243 $(NH_4)[Ce^{IV}F_2(PO_4)]$, hydrothermal synthesis and characterization, 157, 180 $NH_4Ln_3F_{10}$ (Ln = Dy, Ho, Y, Er, Tm), hydrothermal syntheses and crystal structure, **158**, 358 (NH₄)₇U₆F₃₁, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68 LnOF-LnF₃ systems (Ln = Nd,Sm,Eu,Gd), anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134 $M_{10}(PO_4)_6F_2$ (M = Ca,Pb,Ba), electrical properties, 156, 57 $\begin{array}{ccc} Ti_4(HPO_4)_2(PO_4)_4F_2\cdot C_4N_2H_{12}\cdot H_2O & and & Ti_4(HPO_4)_2(PO_4)_4F_2\cdot \\ & C_2N_2H_{10}\cdot H_2O, \ hydrothermal \ synthesis \ and \ structure, \ \textbf{162, } 96 \\ Fluorite & \\ \end{array}$ anion-excess, related phases in $LnOF-LnF_3$ systems (Ln = Nd,Sm,Eu, Gd), characterization and defect structure, **157**, 134 strain-driven pyrochlore to defect fluorite phase transition in rare earth sesquioxide-stabilized cubic zirconias, **159**, 121 structure AO_2 , pyrochlore $A_2B_2O_7$ transformation to, Raman spectroscopy and defect chemistry modeling, **160**, 25 # Fluoroapatite and hydroxyapatite materials, electrical properties, comparison, **156**, 57 Fluorocyclohexane/thiourea inclusion compounds temperature-dependent structural properties and crystal twinning, 156, 16 Free energy minimization simulation of thermal expansion in La-based perovskites, **156**, 394 Fullerenes hydrothermal behavior: transformation to amorphous carbon and carbon nanotube formation, **160**, 184 superconductors, anionic charge order model, 158, 139 Full-potential linearized augmented plane waves band structure calculations for analysis of low coordination of Ag⁺ and Cu⁺ in chalcogenide environments, **160**, 212 G #### Gadolinium $CsGd_2Ag_3Se_5$, synthesis, structure, and physical properties, **158**, 299 $Cs_3Gd_4Cu_5Te_{10}$, synthesis and structure, **160**, 409 $[Cu_{12}Gd_6(\mu_3-OH)_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9-NO_3)](PF_6)_{10}$ (NO₃)₇·12H₂O, synthesis and characterization, **161**, 214 GdAgMg, synthesis and crystal structures, 161, 67 GdCa₉(VO₄)₇, synthesis and structure, 157, 255 GdCrO₃ perovskite, magnetic properties, 159, 204 Gd₃Cu₂Te₇, synthesis and structure, 159, 186 GdOF-GdF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134 Gd₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77 $Gd_2Si_2O_7$, type K structure at high pressure, 161, 166 Gd₄TiSe₄O₄, crystal structure and magnetic properties, 162, 182 K₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 $KGdTiO_4$, Ruddlesden-Popper phases synthesized by ion exchange of $HLnTiO_4$, 161, 225 Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129 Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299 Rb₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 ZrO_2 - Gd_2O_3 - TiO_2 , phase relations at 1500°C, **160**, 302 Gallium CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, **157**, 62 Ca₂MnGaO_{5+δ}, synthesis and crystal structure, 158, 100 CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34 CdGa₂Se₄, pressure-induced phase transitions, 160, 205 β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, formation by laser impact, 157, 94 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}],$ syntheses and structures, **156**, 480 Sr₃Ga₂O₆, crystal structure, **160**, 421 Sr₁₀Ga₆O₁₉, crystal structure, 160, 421 $Sr_2MnGaO_{5+\delta}$, synthesis, crystal structure, and magnetic properties, 160, 353 $\rm U_3Ga_2\mathit{M'}_3$ ($\mathit{M'}=\rm Si, Ge$), magnetotransport and heat capacity, 158, 227 Genetic algorithm structural analysis of 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, **161**, 121 #### Germanium BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101 Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343 A₅Ge₃ (A = Ca,Sr,Ba,Eu) compounds with Cr₅B₃-like structures, hydrogen impurity effects in, 159, 149 germanium pyrophosphates, syntheses, structures, and thermal expansion, **156**, 213 NaCa₂GeO₄F, synthesis and structure, 160, 33 neptunium-germanium binary system, structural chemistry, **156**, 313 $U_3M_2Ge_3$ (M = Al,Ga), magnetotransport and heat capacity, **158**, 227 Giant magnetoresistance $LaMn_{1-x}Li_xO_3$ perovskites, 159, 68 Glaserite related structure of Na₃Fe(PO₄)₂, 160, 377 Glass sol-gel SiO₂ glass doped with Ni²⁺ and Mn²⁺, defects and photoluminescence, **160**, 272 # Goethite structural change in methane oxidation, in situ XRD and IR study, 156, 225 #### Gold (Fe@Au) nanoparticles, synthesis, characterization, and magnetic fieldinduced self-assembly, 159, 26 # Graphite $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364 Н # Hafniun BaHfO₃ perovskite, Pr^{4+} ions doped in, EPR study, **156**, 203 β -HfNCl, high-pressure synthesis and crystal structure, **159**, 80 $HfT'_2Zn_{20}~(T'=Mn,Fe,Ru,Co,Rh,Ni)$ with $CeCr_2Al_{20}\text{-type}$ structure, $\textbf{161},\,288$ SrHfO₃, hyperfine interaction at, temperature dependence, **159**, 1 Hall constant $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474 Heat capacity TiO₂ nanocrystalline ultrafine powder at low temperature, **156**, 220 $U_3M_2M'_3$ (M = Al,Ga; M' = Si,Ge), 158, 227 Heat of mixing lead zirconate titanate solid solution, 161, 402 Heat of phase transition VO₂ nanopowders, **156**, 274 Heisenberg antiferromagnetic chains $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101 Hexacyanoferrate Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, 161, 249 High-resolution electron microscopy $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$ polysomatic series, 162, 322 fluorinated Nd₂CuO₄, 157, 56 K₂In₁₂Se₁₉, **161**, 385 Na_{1.1}Ca_{1.8}Mn₉O₁₈, **162**, 34 order-disorder transition in (Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, **161**, 348 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135 WO_{3-x} phases leading to WS_2 formation, **162**, 300 High spin molecules pentanuclear cyanide-bridged complexes with ground states S = 6 and S = 9, characterization and magnetic properties, **159**, 302 Hi-Nicalon fibers multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358 Holmium HoAgMg, synthesis and crystal structures, 161, 67 HoB₂₂C₂N, synthesis and crystal structure, 159, 174 HoCa₉(VO₄)₇, synthesis and structure, **157**, 255 $Ho(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350 $AHoO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 Ho₃Ru₂C₅, preparation, properties, and crystal structure, **160**, 77 $\mathrm{NH_4Ho_3F_{10}}$, hydrothermal syntheses and crystal structure, **158**, 358 Hopping energy $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 Host-guest interactions [Hg₆P₄](TiCl₆)Cl, 160, 88 Hydrogen Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, **161**, 97 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209 C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307 $C_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, crystal structure, thermal analysis, and vibrational spectra, **156**, 364 $(C_5H_{14}N_2)_2U_2F_{12}\cdot 5H_2O,$ hydrothermal synthesis, structure, and magnetic properties, 158, 87 (C₂H₁₀N₂)Zr₂F₁₀·H₂O and (C₄H₁₂N₂)ZrF₆·H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, synthesis, crystal structure, and NMR, **162**, 168 [C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, **157**, 110 Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379 Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure, **159**, 239 Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413 [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 [Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, **156**, 242 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, **161**, 9 Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 $Cu_xM_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, **157**, 23 $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$ [Cu₁₂ $Ln_6(\mu_3$ -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀ (NO₃)₇·12H₂O (Ln^{III} = Sm^{III},Gd^{III}), synthesis and characterization, **161.** 214 Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, 160, 278 [M(dicyanamide)₂pyrazine] (M = Mn,Fe,Co,Ni,Zn), synthesis, structural isomerism, and magnetism, **159**, 352 N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312 fused silica reduction in, kinetics, flow and diffusion analysis, 160, 247 HF, impact on tin probe ions located on Cr₂O₃ microcrystal surface, Mössbauer study, 162, 293 H_xMoO₃ bronze, leaching treatments, 159, 51 H₂O(NH₄)₂HPO₄-(NH₄)₂SO₄, polythermal diagram between 0 and 25°C, **156**, 264 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87 impurity effects in A_5Tt_3 (A = Ca,Sr,Ba,Eu; Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, 159, 149 K₄[Cd₃(HPO₄)₄(H₂PO₄)₂], synthesis and layered structure, 162, 188 layered molecule-based magnets formed by decamethylmetallocenium cations, 159, 391 Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29 [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362 [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32 [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O$, revised space groups, **159**, 7 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, NaHPO₃F·2.5H₂O, synthesis and crystal structure, 156, 415 $(NC_5H_{12})_2 \cdot Zn_3(HPO_3)_4$, low-density framework built up from fully connected (3,4) net of ZnO_4 tetrahedra and HPO_3 pseudo pyramids, 160, 4 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 (NH₄)₄H₂(SeO₄)₃, crystal structure below 180 K, 160, 189 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, **162**, 254 NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347 ``` Ni(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal syn- (NH_4)_4[Zn_4Ga_4P_8O_{32}] and (NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}], 156, 480 thesis and crystal structure, 157, 166 Ni(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, 157, 166 Ni(HP2O7)F·C2N2H10 with chain structure, solvothermal synthesis open-framework cadmium oxalates with channels stabilized by alkali and crystal structure, 158, 68 metal ions, 162, 150 polyarylmethyl polyradicals as organic spin clusters, 159, 460 PbSnS₃ nanorods via iodine transport, 160, 50 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, rhodamine B in lactone form, 156, 325 synthesis, structure, and magnetism, 159, 308 Th_2(PO_4)_2HPO_4 \cdot H_2O, Th(OH)PO_4, and Th_2O(PO_4)_2, 159, 139 Sb₂O(CH₃PO₃)₂, synthesis and layered structure, 162, 347 Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O and Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot α-Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, C_2N_2H_{10} \cdot H_2O, 162, 96 A_2[(UO_2)_3(IO_3)_4O_2] (A = K,Rb,Tl) and AE[(UO_2)_2(IO_3)_2O_2](H_2O) Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, structure determination from powder (AE = Sr, Ba, Pb), effects of cations, 161, 416 X-ray and neutron diffraction studies, 157, 283 VO₂·H₂O needle-like nanocrystals, 157, 250 Th₂(PO₄)₂HPO₄·H₂O, hydrothermal synthesis and characterization, Hydroxide 159, 139 AlO(OH)· αH₂O, monoclinic nanocrystals formed by activated surface Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O and Ti_4(HPO_4)_2(PO_4)_4F_2. hydrolysis of Al metal, XRD and IR studies, 157, 40 C₂N₂H₁₀·H₂O, hydrothermal synthesis and structure, 162, 96 amino acid intercalation into layered double hydroxide by coprecipita- tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, tion, 162, 52 ground spin states, 159, 428 BaAl₂O₃(OH)₂·H₂O with six-membered rings, synthesis and character- 1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room ization, 161, 243 temperature, comparison with spin crossover transitions, 159, 451 [(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], \ synthesis \ and Hydrogen bonds structure, 159, 209 Co(NH₃)₆(V_{1.5}P_{0.5})O₆OH, hydrothermal synthesis and crystal struc- Cd(CN)_2 \cdot 2/3H_2O \cdot t-BuOH, 156, 51 C_{10}H_{28}N_4P_4O_{12} \cdot 4H_2O, 156, 364 ture, 159, 239 CsH₅(AsO₄)₂, 161, 9 Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic 2,2-dinitropropane-1,3-diol, temperature dependence, 157, 296 properties, 159, 343 NaHPO₃F · 2.5H₂O and Na₂PO₃F · 10H₂O, 156, 415 [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10} (NO_3)_7 \cdot 12H_2O(Ln^{III} = Sm^{III},Gd^{III}), synthesis and characterization, α-nitronyl nitroxide radicals, 159, 440 Hydrogen fluoride 161, 214 impact on tin probe ions located on Cr₂O₃ microcrystal surface, Möss- goethite, structural change in methane oxidation, in situ XRD and IR bauer study, 162, 293 study, 156, 225 Mg:Al layered double hydroxide and hexacyanoferrate, physical and Hydrolysis Al metal surface into AlO(OH) · αH₂O nanocrystals in monoclinic struc- chemical interactions between, 161, 249 ture, 157, 40 [Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, revised space forced cohydrolysis at 100°C: direct synthesis of fluorite-type ceria- groups, 159, 7 zirconia solid solution nanoparticles at low temperature, 158, Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal struc- 112 ture, 157, 213 [NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2] (x = 1.65), syn- Hydrothermal synthesis amorphous carbon and carbon nanotubes from C₆₀, 160, 184 thesis and characterization, 159, 59 BaAl₂O₃(OH)₂·H₂O with six-membered rings, 161, 243 Pb₃O₂(OH)(NO₃), crystal structure, 158, 78 Cd(VO_2)_4(SeO_3)_3 \cdot H_2O, 161, 23 Pb₁₃O₈(OH)₆(NO₃)₄, crystal structure, 158, 74 (C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O, 158, 87 M_{10}(PO_4)_6(OH)_2 (M = Ca,Pb,Ba), electrical properties, 156, 57 (C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O and (C_4H_{12}N_2)ZrF_6 \cdot H_2O, 159, 198 Rb_{1.12}(NH₄)_{0.88}SO₄·Te(OH)₆, thermal analysis and crystal structure at [C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes, 435 K, 161, 1 Th(OH)PO₄, hydrothermal synthesis and characterization, 159, 139 157, 110 Co(C₈H₆NO₂)₂ interpenetration networks, 157, 166 Hydroxyapatite Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH, 159, 239 carbonated, deficient in calcium, crystal structure and thermal decompo- Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242 sition, 160, 340 [{Cu(2,2'-bpy)_2}_2Mo_8O_{26}], 161, 173 and fluoroapatite materials, electrical properties, comparison, 156, Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, 157, 166 57 Cu(II) coordination networks with chessboard tunnels, 158, 315 thermal decomposition during plasma-spray procedure, 160, 460 \lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil \lceil \{Cu_2Br_4\} \rceil and \lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil Hyperfine interaction [\{Cu_5Br_7\}], 158, 55 at ¹⁸¹Ta in SrHfO₃, temperature dependence, 159, 1 CuInS₂ nanorods, 161, 179 Hypervalent bonding (Hg_3)_2(HgO_2)(PO_4)_2 and (Hg_3)_3(PO_4)_4, 157, 68 short Pb-Pb bonds in Ti₆Pb_{4.8}, 159, 134 (H_2O)[V_2^{III}F_6] and Pyr-VF₃ of pyrochlore type, 162, 266 K_4[Cd_3(HPO_4)_4(H_2PO_4)_2] with layered structure, 162, 188 K_2TiSi_6O_{15} with corrugated [Si_6O_{15}]_{\infty\infty} layers, 156, 135 Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32 Imino nitroxyl diradical MoS₂, 159, 170 metal complexes with, magnetic properties, 159, 455 Na_2In_2[PO_3(OH)]_4 \cdot H_2O, 157, 213 Impedance NaYFPO₄, 157, 8 ac, A'[A_2B_3O_{10}] (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson- type layered perovskites, 158, 279 (NH_4)[Ce^{IV}F_2(PO_4)], 157, 180 NH_4Ln_3F_{10} (Ln = Dy,Ho,Y,Er,Tm), 158, 358 complex, fluoroapatite and hydroxyapatite materials, comparison, (NH_4)_7U_6F_{31}, 158, 87 156, 57 ``` Impedance spectroscopy chemical degradation of thermally treated ferrite-superconductor multiphase materials, **160**, 332 Inclusion compounds fluorocyclohexane/thiourea, temperature-dependent structural properties and crystal twinning, **156**, 16 Incommensurate modulation $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15) high-temperature phase, **156**, 168 $Ni_{6\pm x}Se_5$, **162**, 122 ZrP₂O₇ cubic phase, 157, 186 Indiun $Bi_{2-x}In_xSe_3$ single crystals, transport properties, **160**, 474 Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CeIrIn₅ and CeRhIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25 CuInS₂ nanorods, hydrothermal synthesis and characterization, **161**, 179 β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, formation by laser impact, **157**, 94 In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13 In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition, structures and textures, TEM study, 158, 119 K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385 KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334 Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213 Na₂MgInF₇, crystal structure, 159, 234 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233 $SrIn_2O_4$ red-emitting phosphors activated by praseodymium, luminescent properties, **156**, 84 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177 Infrared spectroscopy activated surface hydrolysis of Al metal into AlO(OH) \cdot α H₂O nanocrystals in monoclinic structure, 157, 40 CdBa₃(HPO₄)₂(H₂PO₄)₂, **161**, 97 $Ce_{1-x}Bi_xVO_4$ and $Ce_{1-x}M_xVO_{4-0.5x}$ (M=Pb,Sr,Ca) solid solutions, 158, 254 $C_{10}H_{28}N_4P_4O_{12} \cdot 4H_2O$, 156, 364 Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371 α -Co₂SiO₄- α -Ni₂SiO₄, **157**, 102 CsBSe₃, 157, 206 CsH₅(AsO₄)₂, 161, 9 N,N'-dimethylpiperazinium(2+) hydrogen selenite, **161**, 312 goethite structural change in methane oxidation, in situ study, 156, 225 KIn(WO₄)₂, 158, 334 LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, **160**, 368 Li₂Zn(HPO₄)₂ · 0.66H₂O, **162**, 29 local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 mono-L-valinium nitrate, **158**, 1 Na₃Fe(PO₄)₂: glaserite-like structure, 160, 377 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241 physical and chemical interactions between Mg.Al layered double hydroxide and hexacyanoferrate, **161**, 249 RbBSe₃, 157, 206 $SrFe_{2}(PO_{4})_{2}$ and $Sr_{9}Fe_{1.5}(PO_{4})_{7}$, 162, 113 $Th_2(PO_4)_2HPO_4 \cdot H_2O$, $Th(OH)PO_4$, and $Th_2O(PO_4)_2$, **159**, 139 TlBSe₃, 157, 206 VO₂ nanopowders, 156, 274 V₂O₅ nanocrystals, 159, 181 Interatomic potential for structure simulation of alkaline earth cuprates, 158, 162 in thermal expansion simulation in La-based perovskites, **156**, 394 Interfacial free energy at liquid-solid boundary, derivation from nucleation rates, **159**, 10 Intergrowth phases $n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO}$ (n = 2-5; m = 1), single-crystal X-ray diffraction studies 156, 75 CeIrIn₅ and CeRhIn₅ heavy fermion materials, structure, **158**, 25 La₂₄Li₂₀Ti₅O₅₆, pseudo-close-packed columnar intergrowth structure, **162.** 379 A_x Mo_yW_{1-y}O₃ (A = K,Ce), intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341 Intermetallics REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, **161**, 67 TiAl, reaction with nitrogen plasma, 157, 339 Internal chemical pressure effect $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117 Interpenetration networks Co(II), Cu(II), and Ni(II) with bis(trans-4-pyridylacrylate), hydrothermal syntheses and crystal structures, 157, 166 Iodine catalysis of MgPd₂ formation, kinetics, 159, 113 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88 monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225 NaLa₆(Os)I₁₂, synthesis and structure, **161**, 161 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233 $A_2[(UO_2)_3(IO_3)_4O_2]$ (A = K,Rb,Tl) and $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr,Ba,Pb), formation, effects of cations, **161**, 416 Iodine transport in hydrothermal preparation of PbSnS₃ nanorods, **160**, 50 Ion exchange Li₂NaV₂(PO₄)₃ 3.7-V lithium-insertion cathode with rhombohedral NASICON structure prepared by, **162**, 176 $MnO_2 \cdot 0.22H_2O$ and $MnO_2 \cdot 0.70H_2O$ synthesis from monoclinic-type LiMnO₂, **160**, 69 noncluster vanadium(IV) coordination polymers, 160, 118 synthesis of KLnTiO₄ (Ln = La,Nd,Sm,Eu,Gd,Dy) Ruddlesden-Popper phases by ion exchange of HLnTiO₄, **161**, 225 Ionic conductivity fluoroapatite and hydroxyapatite materials, comparison, 156, 57 LiVO₃, neutron powder diffraction study from 340 to 890 K, **156**, 379 in Nasicon structures, modeling, 156, 154 phosphorus oxynitride compounds, **161**, 73 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2–0.8), **156**, 437 $SI_{0.97}II_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), 150, 43 Iridiun Ba₇Ir₆O₁₉, structural relationship to Sr₇Re₄O₁₉, **160**, 45 $CeIrIn_5$ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25 IrTe₂, preparation under high pressure, theoretical study, **162**, 63 [(Me₃Sn)₃Ir(CN)₆], metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324 $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$, crystal structure, **157**, 324 Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, Mössbauer spectrum, and magnetic behavior, **159**, 46 BaFe[(CN)₅NO] · $3H_2O$, oxidative thermal decomposition, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, (BEDT-TTF)₄[Fe(NCS)₆]·CH₂Cl₂, **159.** 385 [(S)- $C_5H_{14}N_2$][Fe₄(C_2O_4)₃(HPO₄)₂] and [(S)- $C_5H_{14}N_2$][Fe₄(C_2O_4)₃ (HPO₄)₂(H₂O)₂], synthesis and characterization, **157**, 233 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$ crystallographic shear structure compounds, stability, **161**, 45 $Cu_{3+1.5x}Fe_{4-x}(VO_4)_6$, phase formation and crystal structures, **156**, 339 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327 (Fe@Au) nanoparticles, synthesis, characterization, and magnetic fieldinduced self-assembly, 159, 26 Fe₄Cl₈(THF)₆, compounds based on, structural and magnetic study, 159, 281 [Fe(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352 Fe_2O_3 nanoparticles, pillaring of $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with, 160, 435 α-Fe₂O₃, structure and magnetic properties, effects of Zn doping, **156**, Fe₂O₃-Cr₂O₃-TiO₂, phase relations between 1000 and 1300°C, **161**, 45 ferrite-superconductor multiphase materials, thermally treated, chemical degradation, **160**, 332 [Fe^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391 FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79 $T\text{Fe}_2\text{Zn}_{20}$ (T = Zr,Hf,Nb) with $\text{CeCr}_2\text{Al}_{20}$ -type structure, **161**, 288 goethite, structural change in methane oxidation, *in situ* XRD and IR study, **156**, 225 In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13 $K_{0.2}Co_{1.4}[Fe(CN)_6]\cdot 7H_2O,$ microstructural changes induced by thermal treatment, 156, 400 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250 (La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215 $LiCo_{1-x}Fe_xO_2$ system, lithium-ion conductors of, preparation and structure, **156**, 470 Li-Fe-Mn-O spinel solid solutions, preparation and characterization, 161. 152 Li–Fe–tartrate gels (molar ratio Li/Fe \leq 1/5), thermal behavior, **160**, 100 Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305 Li_xNi_{0.70}Fe_{0.15}Co_{0.15}O₂ system, X-ray diffraction and Mössbauer study, **159**, 103 Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249 Mg-Fe-O and Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and *in situ* Mössbauer spectroscopy, **161**, 38 Na₃Fe(PO₄)₂, glaserite-like structure, 160, 377 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307 SrFeO_v, electrical properties at high temperature, 158, 320 Sr₂Fe₂O₅, crystal and magnetic structures at elevated temperatures, **156**, 292 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, synthesis and characterization, 162, $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437 $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3,$ structure and physical properties, effects of metal-metal sigma bonding, $\bf 162,\ 103$ TIFeO₃, structural distortion and chemical bonding, comparison with $AFeO_3$ (A = rare earth), 161, 197 Isomerism $[M(dicyanamide)_2 pyrazine] (M = Mn, Fe, Co, Ni, Zn), 159, 352$ J Jahn-Teller distortion $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, pressure dependence, **160**, 307 Ni³⁺-O octahedron in Li(Mn,Ni)₂O₄ 5V cathode materials for lithiumion secondary batteries, **156**, 286 role in resistivity increase by thermal cycling under magnetic field in $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$, **160**, 1 Jahn-Teller effect $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333 Κ #### Kinetics chemical degradation of thermally treated ferrite-superconductor multiphase materials, 160, 332 fused silica reduction in hydrogen, flow and diffusion analysis, **160**, 247 iodine-catalyzed MgPd₂ formation, **159**, 113 phase changes in clusters, molecular dynamics studies, 159, 10 L # Lanthanum $BaLa_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, 159, 163 Bi_{4.86}Li_{1.14}O₉ monoclinic structure, *ab initio* determination from powder neutron diffraction data, **162**, 10 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, 156, 445 CsLa₂CuSe₄, synthesis, structure, and physical properties, 158, 299 K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites, pillaring with Fe₂O₃ nanoparticles, **160**, 435 KLaTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225 La^{3+} , substitution in $Pb_5Ta_{10}O_{30}$, effect on ferroelectric properties, 157, 261 LaAgMg, synthesis and crystal structures, 161, 67 LaM_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307 La-Ca-Mn-O system, phase equilibrium, 156, 237 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, **157**, 309 LaCa₉(VO₄)₇, synthesis and structure, 157, 255 $La(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350 LaCoO₃, spin state transition depending on temperature or Sr doping, XAS study, 158, 208 $La_8Cu_7O_{19}$ five-leg spin ladder compound, crystal growth, structure, and transport properties, **156**, 422 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250 La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, 162, 379 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, **159**, 68 $LaMnO_{3+\delta}$, granular, charge-carrier localization on Mn surface sites in, **160**, 123 La₂Mo₄O₁₅, crystal structure, ab initio determination from X-ray and neutron powder diffraction, 159, 228 $La_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90 LaOX (X = Cl,Br), and solid state solutions of, mechanochemical synthesis, **160**, 469 LaBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173 La₂O₂CO₃ II, crystal structure, 158, 14 La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84 LaSbS₂Br₂, crystal and electronic structures and optical properties, 158, 218 La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117 $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, oxidation states of Cu and Ru in, determination by XANES measurements, **156**, 194 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, electronic and magnetic properties due to Co ions, **159**, 215 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143 $\text{La}_4\text{Ti}_2\text{O}_4\text{Se}_5$ and $\text{La}_6\text{Ti}_3\text{O}_5\text{Se}_9$, syntheses and crystal structures, 157, 289 MLa₂Ti₂TaO₁₀ (M = Cs,Rb) layered perovskites, structure, **158**, 290 α-La₂W₂O₉, *ab initio* structure determination from X-ray and neutron powder diffraction, **159**, 223 NaLa₆(Os)I₁₂, synthesis and structure, **161**, 161 $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) layered perovskites, structure, **158**, 290 perovskites based on, thermal expansion in, computer simulations, $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19 Lasers induction of formation of conducting β -Ga₂O₃-In₂O₃ solid solutions with composition gradients, **157**, 94 Laser-solid-liquid ablation synthesis of Ag₂Se nanoparticles, 160, 430 Layered double hydroxide amino acid intercalation by coprecipitation, 162, 52 intercalation of platinum complex in, 161, 332 Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249 Lead binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184 Ce_{1-x}Pb_xVO_{4-0.5x} solid solutions, Raman and IR spectroscopy, **158**, 254 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135 β -PbO, and other lead(II) oxides, correlation and relativistic effects: quantum *ab initio* explanation of ²⁰⁷Pb NMR and XANES spectra, **157**, 220 Pb₃O₂(OH)(NO₃), crystal structure, 158, 78 Pb₁₃O₈(OH)₆(NO₃)₄, crystal structure, 158, 74 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb,Ta) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207 $Pb_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57 PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50 $Pb_5Ta_{10}O_{30}$, ferroelectric properties, effect of cationic substitutions, 157, 261 Pb[(UO₂)₂(IO₃)₂O₂](H₂O), formation, effect of cation, **161**, 416 PbVOP₂O₇ with intersecting tunnel structure, **162**, 354 PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, 161, 402 PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40 Ti₆Pb_{4.8}, short Pb-Pb bonds in, **159**, 134 $(Tl,Pb)A_2QCu_2O_{6+z}$ (A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, **162**, 1 Lead-free relaxor ferroelectrics solid state chemistry, 162, 260 Ligand field control of magnetic anisotropy in molecular materials, **159**, 253 Lithium Al-Li-Si system Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria, 156, 500 polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506 effects on amorphous to crystalline phase transition of silica, **161**, 373 electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388 intercalation in cation-deficient spinels with formula close to ${\rm Li_2Mn_4O_9},$ 160, 108 La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, 162, 379 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, 159, 68 Li-M-X systems (M = V,Nb,Ta; X = P,As), synthesis and crystal structure, **156**, 37 LiAlB₂O₅, ab initio structure determination, 156, 181 LiCo_{1-x}Fe_xO₂ system, lithium-ion conductors of, preparation and structure, **156**, 470 LiCoO₂ films, direct fabrication on substrates in flowing aqueous solutions at 150°C, 162, 364 Li₃CuSbO₅, crystal structure, **156**, 321 Li-Fe-Mn-O spinel solid solutions, preparation and characterization, 161, 152 Li–Fe–tartrate gels (molar ratio Li/Fe \leq 1/5), thermal behavior, **160**, 100 Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305 LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, **148**, 316; comments, **156**, 251, 253 LiMnO₂, monoclinic-type, MnO₂·0.22H₂O and MnO₂·0.70H₂O synthesis from. **160.** 69 LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, NMR and FTIR studies, 160, 368 Li(Mn,M)₂O₄ (M = Cr,Co,Ni), 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 Li₂Mn₄O₉, cation-deficient spinels with formula close to, topotactic reactions, structure, and Li intercalation, **160**, 108 Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, 158, 148 $\rm Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3,$ structural and electrochemical study, 158, 169 Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, **159**, 103 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z=0.075), single-crystal growth and structural chemistry, **160**, 178 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, structure, neutron diffraction study, 158, 187 $\text{Li}_2Ln_5\text{O}_4(\text{BO}_3)_3$ (Ln = Yb, Lu), discovery in $\text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3$ phase diagram and structural analysis of Yb phase, **156**, 161 γ-Li₃PO₄, ionic conductivity, theoretical study, **161**, 73 γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73 LiVO₃, structural disorder and ionic conductivity, neutron powder diffraction study from 340 to 890 K, **156**, 379 $\text{Li}_{1+x}V_3O_8$, mechanochemical synthesis, reduction processes in, 160, 444 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}$, synthesis and characterization, **162**, 29 Lone pair electrons distortion of Pb₃O₂(OH)(NO₃) crystal structure, 158, 78 localization in Bi_{4.86}Li_{1.14}O₉ monoclinic structure, **162**, 10 Low-pressure chemical vapor deposition continuous, in deposition of multilayered BN coatings onto Hi-Nicalon fibers, **162**, 358 # Luminescence BaZnCl₄-II:Sm²⁺, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237 SrIn₂O₄ red-emitting phosphors activated by praseodymium, **156**, 84 voltage-dependent, molecularly doped polymer system, **158**, 242 YNbO₄ and YNbO₄:Bi, **156**, 267 ### Lutetium $\text{Li}_2\text{Lu}_5\text{O}_4(\text{BO}_3)_3$, discovery in $\text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3$ phase diagram, 156, 161 LuM_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93 LuB₂₂C₂N, synthesis and crystal structure, 159, 174 LuCa₉(VO₄)₇, synthesis and structure, 157, 255 $ALuO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 Μ #### Magnesium REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, 161, 67 Mg-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52 Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249 [MgAl] layered double hydroxide, platinum complex intercalation into, 161, 332 Mg(CN)₂, synthesis and structural properties, 159, 244 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\le x \le$ 0.166), synthesis and crystal structure, **160**, 251 MgF₂, decomposition in transmission electron microscope, **157**, 30 Mg-Fe-O and Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and *in situ* Mössbauer spectroscopy, **161**, 38 $\label{eq:mgN(CN)2} Mg[N(CN)_2]_2, synthesis, vibrational spectroscopy, and crystal structure, \\ \textbf{157}, 241$ Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order-disorder transitions, neutron diffraction study, **156**, 487 MgO(001), cleaved surface, epitaxial growth of AgS_2 film on, 157, 86 $MgPd_2$, $MgPd_3$, and Mg_3Pd_5 , structure and thermal stability, and kinetics of iodine-catalyzed $MgPd_2$ formation, 159, 113 Na₂MgInF₇, crystal structure, 159, 234 Magnetic anisotropy control in molecular materials, 159, 253 in magnetic exchange between orbitally degenerate metal ions, **159**, 268 Magnetic bistability organic crystals at room temperature, comparison with spin crossover transitions, **159**, 451 Magnetic exchange between orbitally degenerate metal ions, associated magnetic anisotropy, **159**, 268 Magnetic field (Fe@Au) nanoparticle self-assembly induced by, 159, 26 $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$ resistivity under, increase by thermal cycling, **160.** 1 Magnetic g-factors Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42 Magnetic properties Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, 159, 46 Ba₅Co₅ClO₁₃, 158, 175 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144 BaNd₂MnS₅, 159, 163 Ba₃NdRu₂O₉ 6H-perovskite, **161**, 113 $BaLn_2MS_5$ (*Ln* = La,Ce,Pr,Nd; *M* = Co,Zn), **159**, 163 BaV₁₃O₁₈, **158**, 61 BiMn₆PO₁₂, **157**, 123 $Ca_3Co_{1+x}Mn_{1-x}O_6$ quasi-one-dimensional oxides, **160**, 293 Ca₃CuMnO₆ quasi-one-dimensional oxides, **160**, 293 CdCr_{2-x}Ga_xSe₄ spinel system, **158**, 34 $(C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O$, **158**, 87 $M_4\text{Cl}_8(\text{THF})_6$ -based compounds with M = Mn,Fe,Co, 159, 281 Co₃[BPO₇], 156, 281 Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371 $CoFe(CN)_5NH_3 \cdot 6H_2O$, effects of dehydration and photo-irradiation, 159, 336 Co(H₂O)₂O₂CC₆H₄CO₂, **159**, 343 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La, Nd, Dy, Ho, Yb), correlation with phonon mode behavior, **160**, 350 Co₂(OH₂)O₂CC₆H₄CO₂, 159, 343 $Cp_2Mo(dmit)$ with Br^- or BF_4^- , 159, 413 $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362 Cs_2CoSiO_4 and Cs_5CoSiO_6 , **162**, 204 Cu(II) coordination networks with chessboard tunnels, 158, 315 $$\begin{split} & \big[\text{Cu}_{12} L n_6 (\mu_3 \text{-OH})_{24} (\text{C}_5 \text{H}_5 \text{NCH}_2 \text{CO}_2)_{12} (\text{H}_2 \text{O})_{18} (\mu_9 \text{-NO}_3) \big] (\text{PF}_6)_{10} \\ & (\text{NO}_3)_7 \cdot 12 \text{H}_2 \text{O} \ (\textit{Ln}^{\text{III}} = \text{Sm}^{\text{III}}, \text{Gd}^{\text{III}}), \ \textbf{161}, \ 214 \end{split}$$ [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), 159, 352 EuPd₃S₄, 157, 117 $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333 (Fe@Au) nanoparticles, 159, 26 α-Fe₂O₃, effect of Zn doping, 156, 408 GdCrO₃ perovskite, 159, 204 Gd₄TiSe₄O₄, 162, 182 [Hg₆P₄](TiCl₆)Cl, 160, 88 $Hg_4VO(PO_4)_2$ containing Hg_2^{2+} dumbbells, 158, 94 $(H_2O)[V_2^{III}F_6]$ and Pyr-VF₃ of pyrochlore type, **162**, 266 K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 $LaMn_{1-x}Li_xO_3$ perovskites, **159**, 68 LaMnO_{3+ δ}, **160**, 123 $La_{1-x}Pr_{x}CrO_{3}$, **162**, 84 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, due to Co ions, **159**, 215 layered molecule-based magnets formed by decamethylmetallocenium cations and $[M^{II}Ru^{III}(oxalate)_3]$ ($M^{II}=Mn,Fe,Co,Cu,Zn$), 159, 391 Li₂Mn₂(SO₄)₃, **158**, 148 metal complexes with imino nitroxyl diradical, 159, 455 $[Mn^{II}(t-Bu)_4 salen]_2$, **159**, 403 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, 159, 362 MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, **159**, 293 [Mn(L)]₃[Cr(CN)₆]₂·nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), **159**, 328 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32$ $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb), **162**, 90 Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 Na_xMnO_{2+δ} prepared by reduction of aqueous sodium permanganate by sodium iodide, **156**, 331 ``` Ln_{1,33}Na_xMn_xTi_{2-x}O_6 (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), 161, 294 (NH_4)_7U_6F_{31}, 158, 87 A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), structural and electronic factors governing, 160, 239 pentanuclear cyanide-bridged complexes with high spin ground states S = 6 and S = 9, 159, 302 polyarylmethyl polyradicals, 159, 460 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, Pr_{0.7-x\sqrt}Sr_{0.3}MnO₃ perovskites, effect of Pr deficiency, 156, 68 RbEr₂Cu₃S₅, 158, 299 Rb₂Gd₄Cu₄S₉, 158, 299 R_3 Ru_2 C_5 (R = Y,Gd-Er), 160, 77 Ln_3 RuO_7 (Ln = Sm_1 Eu), 158, 245 Sr_2CoSbO_{6-\delta} and Sr_3CoSb_2O_9 perovskites, 157, 76 Sr_3Fe_{2-x}Co_xO_{7-\delta} (0 \leq x \leq 0.8), 158, 307 Sr_2MnGaO_{5+\delta}, 160, 353 Sr₇Re₄O₁₉, 160, 45 Th₃Co₃Sb₄, 162, 158 LnTi_{0.5}V_{0.5}O_3 (Ln = Ce,Pr), 156, 452 TlCr_5S_{8-y}Se_y (y = 1-7): spin-glass behavior mediated by nonmagnetic sublattice, 158, 198 TIFeO₃, comparison with AFeO_3 (A = rare earth), 161, 197 1,3,5-trithia-2,4,6-triazapentalenyl crystals at room temperature, 159, V₅S₈, effects of metal-atom clustering, 160, 287 YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355 Magnetic solids molecule-based, preface to special issue on, 159, 251 with several unpaired electrons per spin site, antiferromagnetic spin exchange interactions, spin dimer analysis, 156, 464 Magnetic structure Ba₃NdRu₂O₉ 6H-perovskite, 161, 113 marokite, 160, 167 Pd₃Mn and Pd₃MnD_{0.7}, high-pressure neutron diffraction studies, 161, 93 Sr₂Fe₂O₅ at elevated temperature, 156, 292 Magnetic susceptibility Ba₃NdRu₂O₉ 6H-perovskite, 161, 113 \kappa-(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, 159, 407 Ce₂Ni₂₂C_{2.75}, 161, 63 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, 159, 385 LnCrO_4 (Ln = Nd,Sm,Dy), 160, 362 Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, 162, 250 marokite, 160, 167 NaLa₆(Os)I₁₂, 161, 161 Na_2M_3Sb_4 (M = Sr,Ba), 162, 327 nonlinear, Co₃BTCA₂(H₂O)₄, resonance in, 159, 379 ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, 173 SrFe_2(PO_4)_2 and Sr_9Fe_{1.5}(PO_4)_7, 162, 113 Sr_{9/8}TiS_3, Sr_{8/7}TiS_3, and Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, effects of metal-metal sigma bonding, 162, 103 Ti₁₁(Sb,Sn)₈, 157, 225 Magnetization negative, GdCrO₃ perovskite, 159, 204 Magnetoresistivity ``` $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, 159, 328 $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, 328[Mn(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, 159, 352 MnF_5 chains, and CrX_2 (X = O,S) layers, compounds consisting of, spin exchange parameters, 156, 464 Mn₆(H₂O)₂(HPO₄)₄(PO₄)₂·C₄N₂H₁₂·H₂O, synthesis and characterization, 156, 32 $U_3M_2M'_3$ (M = Al,Ga; M' = Si,Ge), 158, 227 α-MnO₂, open tunnel oxide precipitated by ozone oxidation, prepara-Manganese tion and characterization, 159, 94; erratum, 160, 292 Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, MnO₂·0.22H₂O and MnO₂·0.70H₂O, synthesis from monoclinic-type Mössbauer spectrum, and magnetic behavior, 159, 46 LiMnO₂, 160, 69 BaKCu₃MnS₄, electrical and magnetic properties, 157, 144 BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163 BiMn₆PO₁₂, preparation, structure, and magnetic properties, **157**, 123 Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 Ca₂MnGaO_{5+δ}, synthesis and crystal structure, **158**, 100 CaMn₂O₄ marokite, antiferromagnetism, 160, 167 $Ca_{1-x}Y_xMnO_3$, structural phase diagram, 156, 458 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), phonon modes, **160**, 350 $Cu_xMn_{1-x}(HCOO)_2 \cdot 2H_2O$, crystal structure and thermal behavior, **157.** 23 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, 160, 307 La-Ca-Mn-O system, phase equilibrium, 156, 237 La_{2-x}Ca_{1+2x}Mn₂O₇, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, 157, 309 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, 159, 68 $LaMnO_{3+\delta}$, granular, charge-carrier localization on Mn surface sites in, 160, 123 La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, 156, 117 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, **156**, 143 Li-Fe-Mn-O spinel solid solutions, preparation and characterization, **161,** 152 LiMnO₂, monoclinic-type, MnO₂·0.22H₂O and MnO₂·0.70H₂O synthesis from, 160, 69 LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, NMR and FTIR studies, 160, 368 $Li(Mn,M)_2O_4$ (M = Cr,Co,Ni), 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 Li₂Mn₄O₉, cation-deficient spinels with formula close to, topotactic reactions, structure, and Li intercalation, 160, 108 Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, 158, 148 Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO₄)₃, structural and electrochemical study, 158, Mn2+, sol-gel SiO2 glass doped with, defects and photoluminescence, Mn-Al layered double hydroxide, amino acid intercalation by coprecipi- [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reac- Mn₄Cl₈(THF)₆, compounds based on, structural and magnetic study, $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, 159, 293 tion with tetracyanoethylene, 159, 403 169 160, 272 **159**, 281 362 tation, 162, 52 [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, 159, 321 [MnIRuIII(oxalate)3], and decamethylmetallocenium cations, layered molecule-based magnets formed by, 159, 391 TMn_2Zn_{20} (T = Zr,Hf,Nb) with CeCr₂Al₂₀-type structure, 161, Na_{1.1}Ca_{1.8}Mn₉O₁₈, synthesis by calcium insertion in Na₄Mn₉O₁₈ tunnel structure, 162, 34 $Na_xMnO_{2+\delta}$, synthesis by reduction of aqueous sodium permanganate with sodium iodide, 156, 331 Na₄Mn₉O₁₈ tunnel structure, calcium insertion in, **162**, 34 $Ln_{1.33}Na_xMn_xTi_{2-x}O_6$ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, 161, 294 Nd-Mn-O system, phase equilibrium at 1100°C, 158, 236 Pd₃Mn and Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction studies, 161, 93 polynuclear self-assembled Mn(II) cluster complexes, synthesis, structure, and magnetism, 159, 308 Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, 160, 1 Pr_{0.7-x□}Sr_{0.3}MnO₃ perovskites, physical properties, effect of Pr deficiency, 156, 68 Sr₂MnGaO_{5+δ}, synthesis, crystal structure, and magnetic properties, **160,** 353 surface sites in granular LaMnO_{3+δ}, charge-carrier localization on, 160, 123 Marokite antiferromagnetism, 160, 167 MCM-41 phase transformation in mother liquid at moderate temperature, 160, titania-modified, nanosized Pd clusters deposited on, synthesis, characterization, and photoactivity, 162, 138 Mechanical alloying combustion and continuous reactions during, mechanisms, 158, 268 Mechanical resistance microporous materials prepared by pyrolysis, estimation, 160, 13 Mechanical stability microporous materials prepared by pyrolysis, estimation, 160, 13 Mechanochemical activation Aurivillius oxide production with n = 1, 160, 54 Mechanochemical synthesis LaOX (X = Cl,Br) and solid state solutions, **160**, 469 Li_{1+x}V₃O₈, reduction processes in, 160, 444 Melting point V₂O₅ nanocrystals, 159, 181 Mercury HgBr₂ intercalated Bi₂Sr₂CaCu₂O_v single crystal, polarized X-ray absorption spectroscopy, 160, 39 HgCl₂, mixture with (NH₄)Cl, reactivity with Monel containers, 162, 254 $HgA_2QCu_2O_{6+z}$ (A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, 162, 1 (Hg₃)₂(HgO₂)(PO₄)₂, synthesis, crystal structure, and thermal behavior, 157, 68 (Hg₃)₃(PO₄)₄, synthesis, crystal structure, and thermal behavior, 157, [Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, **160**, 88 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, 161, 355 Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, 158, 94 Metal-atom clustering in V₅S₈, effects on magnetic properties, 160, 287 Metal-insulator transition cobaltites(III) and cobaltites(IV) with perovskite or related structure, **162**, 282 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355 Metal ions orbitally degenerate, magnetic exchange between, associated magnetic anisotropy, 159, 268 Metallocene charge-transfer salts design and synthesis, 159, 420 Metal-metal distance in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), 160, 93 Metal-metal sigma bonding effects on structures and physical properties of Sr_{9/8}TiS₃, Sr_{8/7}TiS₃, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103 Metal-organic frameworks Co(II), Cu(II), and Ni(II) with bis(trans-4-pyridylacrylate), hydrothermal syntheses and crystal structures, 157, 166 Cu(II) coordination networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315 Metal triangles high-temperature reactions, effects of counterion, ligand, and metal, **159,** 321 Metamagnetism $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), 160, 350 Fe₄Cl₈(THF)₆-based compound, 159, 281 layered cobaltous terephthalate, 159, 343 Metathesis reactions $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir) with tetrapropylammonium and -phosphonium ions, 157, 324 Methane oxidation, structural change of goethite in, in situ XRD and IR study, 156, 225 4-Methylbenzaldehyde intercalation into VOPO₄, 157, 50 Microdomains in K₂In₁₂Se₁₉, **161**, 385 Microporous materials prepared by pyrolysis, mechanical stability and resistance, estimation, **160**, 13 Misfit layer compounds [Ca₂CoO₃][CoO₂]_{1.62}, 4D structural study, 160, 322 Mixed-valence compounds synthesis, 159, 51 Modules L-Ta₂O₅ and related structures, **160**, 62 Molecular clusters $M_4\text{Cl}_8(\text{THF})_6$ (M = Mn,Fe,Co), compounds based on, structural and magnetic study, 159, 281 formation by self-assembly of molecular magnets, 159, 262 Mn-Cr-CN, magnetic properties, 159, 293 Molecular dynamics kinetics of phase changes in clusters: crystal nucleation of (RbCl)₁₀₈ clusters at 600, 550, and 500 K, 159, 10 simulation of structural phase transitions in RbNO₃ and CsNO₃, 160, simulation of thermal expansion in La-based perovskites, 156, 394 Molecular magnets library of, design and synthesis by charge-transfer salt approach, 159, magnetic anisotropy in, control, 159, 253 α-nitronyl nitroxide radicals, chirality in solid state, 159, 440 preface to special issue on, 159, 251 self-assembly, versatile building blocks for, 159, 262 Molybdenum Bi₂MoO₆ Aurivillius compound, production by mechanochemical activation, 160, 54 Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72 CdTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209 CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413 [{Cu(2,2'-bpy)₂} $_2$ Mo $_8$ O $_2$ 6], hydrothermal synthesis and crystal structure, **161**, 173 $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39},$ crystallization and structural characterization, $161,\,85$ H_xMoO₃ bronze, leaching treatments, 159, 51 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87 δ-KMo₂P₃O₁₃, revised space groups, 159, 7 La₂Mo₄O₁₅, crystal structure, ab initio determination from X-ray and neutron powder diffraction, 159, 228 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \ \textbf{159}, \ 7$ Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160, 156 MoS₂, hydrothermal synthesis and pressure-related crystallization, **159**, 170 A_x Mo_yW_{1-y}O₃ (A = K,Ce), intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341 Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7 $W_x Mo_{(1-x)} S_2$ lamellar solid solution, two cation disulfide layers in, 160, 147 Monel containers (NH₄)Cl/HgCl₂ mixture reactivity in, 162, 254 Monoalkyl aluminum(III) compounds reduction, Na/K alloy for, 162, 225 Mono-L-valinium nitrate crystal structure and vibrational spectra, 158, 1 Mössbauer spectroscopy Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, 159, 46 $[CoCp_2^*][FeRu(C_2O_4)_3]$, 159, 391 $\text{Cu}_{5.52(8)}\text{Si}_{1.04(8)}\square_{1.44}\text{Fe}_4\text{Sn}_{12}\text{S}_{32}$ thiospinel, 161, 327 $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), **156**, 339 EuPd₃S₄, 157, 117 Eu₃RuO₇, **158**, 245 $M^{\rm II}M^{\rm IV}$ F₆ ($M^{\rm II}$ = Ni,Pd,Cu; $M^{\rm IV}$ = Pd,Pt,Sn), **162**, 333 $[FeCp_2^*][FeRu(C_2O_4)_3]$, 159, 391 FeSb₂S₄, 162, 79 hydrogen fluoride impact on tin probe ions located on Cr₂O₃ microcrystal surface, **162**, 293 $Li_xNi_{0.70}Fe_{0.15}Co_{0.15}O_2$ system, **159**, 103 Mg-Fe-O and Mg-Fe-Al-O complex oxides: analysis of reduction reaction, **161**, 38 Na₃Fe(PO₄)₂: glaserite-like structure, **160**, 377 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0, 0.5, 1.0), **156,** 349 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, **162**, 113 TlFeO₃: structural distortion and chemical bonding, **161**, 197 Zn doping effects on α-Fe₂O₃, 156, 408 Multivariate data analysis modeling structure-property relationships of superconductive cuprates, 162, 1 Ν Nanocomposites Al-Ti, Al-Ti-Zr, Al-Zr, Si-Al, Si-Ti, and Si-Zr with lamellar or hexagonal structure, synthesis and characterization, 158, 134 Nanocrystals Ag₂Te and Ag₇Te₄, sonochemical synthesis, **158**, 260 $AIO(OH)\cdot\alpha H_2O,$ monoclinic crystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40 binary metal chalcogenides, synthesis in alkaline aqueous solution, 161, 184 TiO₂ anatase, preparation, characterization, and spectral studies, **158**, 180 ultrafine powder, preparation, characterization, and low-temperature heat capacities, **156**, 220 VO₂ powder, preparation and characterization, 156, 274 V₂O₅, preparation and characterization, **159**, 181 $VO_2 \cdot H_2O$ with needle-like structure, metastable phase and phase transformation, 157, 250 Nanoparticles Ag₂Se, synthesis by laser-solid-liquid ablation, **160**, 430 (Fe@Au), synthesis, characterization, and magnetic field-induced selfassembly, 159, 26 Fe_2O_3 , pillaring of $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with, fluorite-type ceria-zirconia solid solutions, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112 Pd clusters deposited on titania-modified mesoporous MCM-41, synthesis, characterization, and photoactivity, **162**, 138 WO_{3-x}, structure and reduction leading to WS₂ formation, **162**, 300 yttria-stabilized zirconia, synthesis by molecular decomposition process, **157**, 149 Nanorods CuInS₂, hydrothermal synthesis and characterization, 161, 179 PbSnS₃, prepared via iodine transport hydrothermal method, characterization, **160**, 50 tin sulfide, preparation and morphology control via ethanol thermal route, **161**, 190 Nanotubes carbon, formation from fullerenes under hydrothermal conditions, 160, 184 NH₄(SbO)₃(CH₃PO₃)₂, synthesis and structure, 162, 347 WS_2 , formation via WO_{3-x} reduction, **162**, 300 NASICON structures ionic conductivity in, modeling, 156, 154 mixed α/β superstructure, **156**, 305 rhombohedral, Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with, **162**, 176 Negative capacitance V₂O₃, **159**, 41 Negative magnetization GdCrO₃ perovskite, 159, 204 Neodymium BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163 Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113 $BaNd_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, **159.** 163 fluorinated Nd₂CuO₄, HREM study, 157, 56 KNdTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225 NdAgMg, synthesis and crystal structures, 161, 67 Nd₂BaCuO₅ and Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370 NdCa₉(VO₄)₇, synthesis and structure, 157, 255 Nd(Co_{1/2}Mn_{1/2})O₃, phonon modes, **160**, 350 NdCrO₄, magnetic and crystallographic properties, 160, 362 Nd-Mn-O system, phase equilibrium at 1100°C, 158, 236 $Nd_{1.33}Na_xMn_xTi_{2-x}O_6$ (x = 0.66,0.55), conductivity and magnetic properties, **161**, 294 $NdBO_3$ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 Nd₂O₂CO₃ II, crystal structure, 158, 14 NdOF-NdF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134 Nd₂Si₂O₇, type K structure at high pressure, 161, 166 [Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243 RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299 Rb₃Nd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 Neptunium neptunium–germanium binary system, structural chemistry, **156**, 313 Neutron diffraction, *see also* Powder neutron diffraction $Ca_3Co_{1+x}Mn_{1-x}O_6$ and Ca_3CuMnO_6 quasi-one-dimensional oxides, CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25 superconductive cuprates: structure-property relationships, 162, 1 $TICr_5S_{8-y}Se_y$ (y=1-7): spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198 Nickel BaKCu₃NiS₄, electrical and magnetic properties, 157, 144 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184 $Ca_3Ni_8In_4$, ordered noncentrosymmetric variant of $BaLi_4$ type, **160**, 415 $Ce_2Ni_{22}C_{2.75}$, nonintegar Ce valency in, **161**, 63 α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102 [Cr(CN)₆]₂[Ni(L)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302 $Cu_xNi_{1-x}(HCOO)_2 \cdot 2H_2O$, crystal structure and thermal behavior, 157, 23 $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364 Li(Mn,Ni)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, **156**, 286 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, 159, 103 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z=0.075), single-crystal growth and structural chemistry, **160**, 178 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, structure, neutron diffraction study, 158, 187 Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160, 156 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, 160, 450 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, **162**, 254 $\mathrm{Ni^{2}}^{+}$, sol-gel $\mathrm{SiO_{2}}$ glass doped with, defects and photoluminescence, 160, 272 NiPnCh (Pn = P,As,Sb; Ch = S,Se,Te), preparation and crystal structure, **162**, 69 Ni-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52 ANi₂B₂C (A = Lu,La,Th), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93 $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 nickel-cobalt oxyhydride electrodes of alkaline batteries, outcome of cobalt in, **162**, 270 Ni(II) complexes with imino nitroxyl diradical, magnetic properties, 159, 455 [Ni(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352 NiM^{IV}F₆ (M^{IV} = Pd,Pt,Sn), preparation, magnetic properties, and pressure-induced transitions, **162**, 333 Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68 NiO, dispersion on γ -Al₂O₃ and TiO₂/ γ -Al₂O₃ supports, 157, 274 A_x NiO₃ (A = Ca,Sr,Ba), magnetic properties, structural and electronic factors governing, **160**, 239 Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191 Ni_{1+x}Te₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266 TNi_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288 Niobium $Ba_4CeNb_{10}O_{30}$, with TTB-type structure, crystal structure, 157, 1 nBa(Nb,Zr)O₃ + 3mNbO (n = 2-5; m = 1), single-crystal X-ray diffraction studies, **156**, 75 Bi_{2.5}Me_{0.5}Nb₂O₉ (Me = Na,K), crystal structure, powder neutron diffraction study, 157, 160 Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, cation ordering types and dielectric properties, **156**, 122 Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, **160**, 257 $Ca_2Ta_2O_7$ - $Ca_2Nb_2O_7$, 5M and 7M polytypes, **161**, 274 CuNb₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, 156, 110 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites, pillaring with Fe_2O_3 nanoparticles, **160**, 435 Li-Nb-X systems (X = P,As), synthesis and crystal structure, **156**, 37 Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327 Nb₆Br₈F₇, synthesis and crystal structure, **158**, 327 $Ln_3Nb_2N_6$ (Ln = La, Ce, Pr), synthesis, structure, and magnetic properties, **162**, 90 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, 160, 450 $A'[A_2Nb_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279 NbOPO₄, with orthorhombic structure, negative thermal expansion, **160.** 230 NbT'_2Zn_{20} (T' = Mn, Fe, Ru, Co, Rh, Ni) with $CeCr_2Al_{20}$ -type structure, **161**, 288 $Pb_2(Nb_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, 161, 135 $SbSb_xNb_{1-x}O_4$, solid solution behavior and second-harmonic generating properties, **161**, 57 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), synthesis and characterization, 156, YNbO₄ and YNbO₄:Bi, electronic structures and luminescence properties, 156, 267 Nitrogen Al(CN)₃, synthesis and structural properties, **159**, 244 Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278 BaFe[(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, 159, 174 Be(CN)₂, synthesis and structural properties, 159, 244 - BN multilayered coatings, deposition onto Hi-Nicalon fibers via continuous LPCVD treatment, 162, 358 - Ca₂NF, preparation and single-crystal structure analysis, **160**, 134 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 - charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385 - $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233 - $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209 - C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307 - C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, **156**, 364 - (C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 - $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 - (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, synthesis, crystal structure, and NMR, **162**, 168 - [C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, 157, 110 - Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 - Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371 - CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 - Co(NH₃)₆(V_{1.5}P_{0.5})O₆OH, hydrothermal synthesis and crystal structure, **159**, 239 - $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, characterization and magnetic properties, **159**, 302 - [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 - CsNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222 - $Cs_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390 - Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 - $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$ - $\begin{array}{l} \text{[Cu$_{12}$Ln$_6$(μ_3-OH)$_{24}$(C$_5$H$_5$NCH$_2$CO$_2$)$_{12}$(H_2$O)$_{18}$($\mu_9$-NO$_3$)]$(PF$_6$)$_{10}$ \\ \text{(NO$_3$)$_7$} \cdot 12\text{H}_2\text{O} (Ln^{\text{III}} = \text{Sm}^{\text{III}},\text{Gd}^{\text{III}}), \text{ synthesis and characterization,} \\ \textbf{161}. \ 214 \end{array}$ - Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278 - [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352 - N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312 - β-HfNCl, high-pressure synthesis and crystal structure, **159**, 80 - $K_{0.2}Co_{1.4}[Fe(CN)_6] \cdot 7H_2O$, microstructural changes induced by thermal treatment, 156, 400 - γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73 - $[(Me_3Sn_3)_3M(CN)_6]$ ($M = Co_3Ir$), metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324 - metal complexes with imino nitroxyl diradical, magnetic properties, 159, 455 - Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249 - Mg(CN)₂, synthesis and structural properties, 159, 244 - Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order–disorder transitions, neutron diffraction study, **156**, 487 - [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403 - MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293 - [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 - $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328 - $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2\cdot C_4N_2H_{12}\cdot H_2O,$ synthesis and characterization, **156**, 32 - [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 - $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \mbox{\bf 159, 7}$ - $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb), synthesis, structure, and magnetic properties, **162**, 90 - (NC₅H₁₂)₂·Zn₃(HPO₃)₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, **160**, 4 - $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, and crystal structure, **157**, 241 - $(ND_4)_4D_2(SeO_4)_3$, crystal structure below 180 K, **160**, 189 - $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 - $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, 162, - $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166 - $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, solvothermal synthesis and crystal structure, 158, 68 - nitride superconductors, anionic charge order model, 158, 139 - α -nitronyl nitroxide radicals, chirality in solid state, **159**, 440 - Pb₃O₂(OH)(NO₃), crystal structure, 158, 78 - Pb₁₃O₈(OH)₆(NO₃)₄, crystal structure, 158, 74 - plasma, reaction with TiAl intermetallics, 157, 339 - polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308 - [$(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O$] and [$(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O$], crystal structures, **157**, 324 - RbNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222 - $Rb_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390 - $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96 - Tl^ITl^{III}(CN)₄, synthesis and structural properties, **159**, 244 - tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground spin states, 159, 428 - 1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, **159**, 451 - β -ZrNCl, high-pressure synthesis and crystal structure, **159**, 80 Nitrogen adsorption isotherm - α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; *erratum*, **160**, 292 - α-Nitronyl nitroxide radicals - chirality in solid state, 159, 440 - Nocolok flux - AlF₃-KF-CsF compositions for, **161**, 80 - Nuclear magnetic resonance - (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, **162**, 168 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, **159**, 87 LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, **160**, 368 local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 β -PbO, quantum *ab initio* explanation, **157**, 220 polyoxovanadates synthesized from aqueous solution, 162, 315 rhodamine B in lactone form, 156, 325 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), **156**, 349 structural aspects of solid-state polycondensation reaction in alkali 4-halogenomethylbenzoates, **156**, 61 Nucleation (RbCl)₁₀₈ clusters at 600, 550, and 500 K, molecular dynamics studies, **159**, 10 0 Octacyanometalate complexes as building blocks for self-assembly of molecular magnets, **159**, 262 Optical microscopy Bi₂TeO₅ oxidation studies, 161, 365 Optical properties RbEr₂Cu₃S₅ and Rb₂Gd₄Cu₄S₉, 158, 299 $LnSbS_2Br_2$ (Ln = La,Ce), **158**, 218 Orbital degeneracy metal ions with, magnetic exchange between, associated magnetic anisotropy, 159, 268 Order-disorder transitions (Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, **161**, 348 uniaxial orientational, in Mg(ND₃)₂Cl₂ and Mg(ND₃)₂Br₂, neutron diffraction study, **156**, 487 Ordering cation ordering types in complex perovskite Ca(Ca_{1/3}Nb_{2/3})O₃, effects on dielectric properties, **156**, 122 CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34 incommensurate occupational, Ni in Ni_{1+x}Sn (0.35 < x < 0.45) NiAs/Ni₂In-type phase, **159**, 191 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) and $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) perovskites, **158**, 290 short-range ferromagnetic, $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, 159, 215 Organic antiferromagnetic metals κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 Organic-cation cyclotetraphosphate $\tilde{C}_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, crystal structure, thermal analysis, and vibrational spectra, **156**, 364 Organo-inorganic hybrid compounds nitrilophosphonates of Al and Cu, synthesis and characterization, 160, 278 Osmium NaLa₆(Os)I₁₂, synthesis and structure, 161, 161 Oxalate $\begin{array}{ll} [(S)\text{-}C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] & \text{and} & [(S)\text{-}C_5H_{14}N_2][Fe_4(C_2O_4)_3\\ & (HPO_4)_2(H_2O)_2], \text{ synthesis and characterization, } \textbf{157, } 233 \end{array}$ $[M^{II}Ru^{II}(ox)_3]$ ($M^{II} = Mn$, Fe, Co, Cu, Zn), and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391 Oxidation Bi₂TeO₅, thermoanalytical and optical microscopic studies, **161**, 365 methane, structural change of goethite in, *in situ* XRD and IR study, **156**, 225 Oxidation state Cu and Ru in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, **156**, 194 Oxidative thermal decomposition BaFe[(CN)₅NO]·3H₂O, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17 Oxygen excess, in low Sr doping $\text{La}_{1-x}\text{Sr}_x\text{MnO}_{3+\delta}$ epitaxial films, **156**, 143 nonstoichiometry in YBaCo₂O_{5+x} (0.00 $\leq x \leq$ 0.52), **156**, 355 permeation of Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta} (x = 0.2-0.8), **156**, 437 Oxyhydroxyapatite heat-treated microcrystals, local structure in, solid state NMR, XRD, and IR studies, **160**, 460 Ozone oxidation, α-MnO₂ open tunnel oxide precipitated by, preparation and characterization, **159**, 94; erratum, **160**, 292 Ρ Palladium EuPd₃S₄, Mössbauer effects and magnetic properties, 157, 117 $MgPd_2$, $MgPd_3$, and Mg_3Pd_5 , structure and thermal stability, and kinetics of iodine-catalyzed $MgPd_2$ formation, **159**, 113 nanosized clusters deposited on titania-modified mesoporous MCM-41, synthesis, characterization, and photoactivity, **162**, 138 PdPnCh (Pn = P,As,Sb; Ch = S,Se,Te), preparation and crystal structure, **162**, 69 APd_2B_2C (A = Lu,La,Th), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93 PdM^{IV}F₆ (M^{IV} = Pd,Pt,Sn) and M^{II}PdF₆ (M^{II} = Ni,Pd,Cu), preparation, magnetic properties, and pressure-induced transitions, **162**, 333 Pd₃Mn and Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction studies, **161**, 93 Paracelsian ammonium zinc gallophosphate analog of, synthesis and structure, **156**, 480 Paracrystals cellular, formation from Co-doped CaO polycrystals, 161, 341 Paramagnetic transition $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117 Pechini process $Bi_2Ru_2O_7$ pyrochlore oxide synthesis in alkaline medium, 161, 379 Peierls distortion infinite $[Te_x]^{n-}$ chains in RbUSb_{0.33}Te₆, **161**, 17 Pentanuclear complexes cyanide-bridged, with high spin ground states S=6 and S=9, characterization and magnetic properties, **159**, 302 Periodic domain boundary alkali titanium oxides, 162, 128 Perovskites $(Ba_8Co_6O_{18})_z(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, 162, 322 BaHfO₃, Pr⁴⁺ ions doped in, EPR study, 156, 203 nBa(Nb,Zr)O₃ + 3mNbO (n = 2-5; m = 1), single-crystal X-ray diffraction studies, **156**, 75 Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113 Ca(Ca_{1/3}Nb_{2/3})O₃, cation ordering types and dielectric properties, **156**, 122 $Ca_{0.5}Sr_{0.5}TiO_3$, space group and structure, 160, 8 cobaltites(III) and cobaltites(IV), spin state behavior, 162, 282 Dion-Jacobson-type, layered, $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta), synthesis, structure, and electrical conductivity, **158**, 279 GdCrO₃, magnetic properties, 159, 204 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$, pillaring with Fe_2O_3 nanoparticles, **160**, 435 La-based, thermal expansion in, computer simulations, **156**, 394 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2), lattice distortion in, pressure dependence, **160**, 307 CdGa₂Se₄, induced by pressure, 160, 205 ``` La₂Ca₂MnO₇, detection in La-Ca-Mn-O system, 156, 237 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxide, synthesis, structure, and propertiess, 162, 250 LaMn_{1-x}Li_xO₃, synthesis, structure, and properties, 159, 68 La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}, oxidation states of Cu and Ru in, determina- tion by XANES measurements, 156, 194 MLa_2Ti_2TaO_{10} (M = Cs,Rb) layered perovskites, structure, 158, 290 lead-free relaxor ferroelectrics, solid state chemistry, 162, 260 NaLa_2Ti_2TaO_{10} \cdot xH_2O (x = 2,0.9,0) layered perovskites, structure, Ln_{1.33}Na_xMn_xTi_{2-x}O_6 (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, 161, 294 ABO_3 (A = La-Nd; B = Dy-Lu), preparation, magnetic susceptibility, and specific heat, 157, 173 A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), magnetic properties, structural and electronic factors governing, 160, 239 Pr_{0.7-x□}Sr_{0.3}MnO₃, physical properties, effect of Pr deficiency, 156, 68 Sr_{1-x}Ba_xZrO_3, effects of composition and temperature, high-resolution powder diffraction study, 161, 106 (Sr_{1-x}Ca_x)TiO₃ with composition (x), evolution of crystallographic phases in, 162, 20 Sr₂CoSbO_{6-δ} and Sr₃CoSb₂O₉, synthesis, structure, and physical prop- erties, 157, 76 Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta} (x = 0.2-0.8), transport properties and thermal expansion, 156, 437 SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, 156. 255 Sr_{9/8}TiS_3, Sr_{8/7}TiS_3, and Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, structures and physical properties, effects of metal-metal sigma bonding, 162, 103 LnTi_0 {}_5V_0 {}_5O_3 (Ln = Ce,Pr), magnetic properties, 156, 452 TIFeO₃, structural distortion and chemical bonding, comparison with AFeO_3 (A = rare earth), 161, 197 effect on properties of sol-gel Rh/SiO₂, 158, 154 Phase diagram AlF₃-KF-CsF, 161, 80 Al-Li-Si system in solid state, 156, 500 Ca_{1-x}Y_xMnO_3, 156, 458 Eu₂O₃-SrO-CuO system, 156, 247 La-Ca-Mn-O system, 156, 237 \text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3 (Ln=\text{Yb},\text{Lu}): discovery of \text{Li}_2Ln_5\text{O}_4(\text{BO}_3)_3 and structural analysis of Yb phase, 156, 161 magnetic, Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O, 159, 362 Mg_{1-x}Cu_{2+x}O_3 (0.130 \leq x \leq 0.166), 160, 251 Mo-Ni-P ternary phases, 160, 156 NH_4Ln_3F_{10} (Ln = Dy, Ho, Y, Er, Tm), 158, 358 YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355 Phase equilibrium Al-Li-Si system in solid state, 156, 500 Ca₄Nb₂O₉-CaTiO₃, 160, 257 La-Ca-Mn-O system, 156, 237 Nd-Mn-O system at 1100°C, 158, 236 Phase relations in Fe₂O₃-Cr₂O₃-TiO₂ between 1000 and 1300°C, 161, 45 ZrO₂-Gd₂O₃-TiO₂ at 1500°C, 160, 302 Phase separation YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355 Phase transition antiferromagnetic, CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34 antiferromagnetic insulator-paramagnetic, V2O3 undergoing, conduc- tivity studies, 159, 41 Ba₃NdRu₂O₉ 6H-perovskite, 161, 113 BaZnCl₄-II:Sm²⁺, 162, 237 ``` κ -(BETS)₂FeX₄ (X = Cl,Br), effect of halogen substitution, **159**, 407 ``` in clusters, kinetics, molecular dynamics studies, 159, 10 CsNO₃, molecular dynamics simulation, 160, 222 2,2-dinitropropane-1,3-diol, 157, 296 ferroelectric, detection in Eu₂GeS₄, 158, 343 FeSb₂S₄, 162, 79 KIn(WO₄)₂, vibrational study, 158, 334 La_{2-x}Ca_{1+2x}Mn_2O_7 electron-doped layered phase, 157, 309 LiKSO₄, thermal analysis and X-ray diffraction study, 148, 316; com- ments, 156, 251, 253 LiVO₃, solid-liquid, neutron powder diffraction study from 340 to 890 K, 156, 379 magnetic bistability in organic crystals at room temperature, compari- son with spin crossover transitions, 159, 451 MCM-41 in mother liquid at moderate temperature, 160, 311 mono-L-valinium nitrate at low temperature, DSC, FTIR, and XRD study, 158, 1 NbOPO₄ with orthorhombic structure, 160, 230 (ND_4)_4D_2(SeO_4)_3 and (NH_4)_4H_2(SeO_4)_3, 160, 189 Pierels-type, TlTe, 157, 193 polymorphic, in 3-bromo-trans-cinnamic acid system, 156, 10 RbNO₃, molecular dynamics simulation, 160, 222 Ln_3 RuO_7 (Ln = Sm, Eu), 158, 245 SiO₂, amorphous phase to crystalline phase, effects of alkali ions, 161, 373 Sr₂Fe₂O₅ at elevated temperatures, 156, 292 SrHfO₃: temperature dependence of hyperfine interaction at ¹⁸¹Ta probe, 159, 1 SrTiO₃-SrZrO₃ solid solution, 156, 255 strain-driven, pyrochlore to defect fluorite in rare earth sesquioxide- stabilized cubic zirconias, 159, 121 VO₂·H₂O needle-like nanocrystals, 157, 250 ZrO₂ crystallization in sol-gel system, 158, 349 ZrP₂O₇, 3-D incommensurately modulated cubic phase, 157, 186 Phonon modes A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3 (A = \text{La,Nd,Dy,Ho,Yb}), 160, 350 Phosphors SrIn₂O₄, emitting red light and activated by praseodymium, luminescent properties, 156, 84 YNbO₄ and YNbO₄:Bi, electronic structures and luminescence proper- ties, 156, 267 Phosphorus Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, Mössbauer spectrum, and magnetic behavior, 159, 46 Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278 BiMn₆PO₁₂, preparation, structure, and magnetic properties, 157, 123 CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, 161, 97 Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}, modified chimney-ladder structures with lad- der-ladder and chimney-ladder coupling, 156, 88 [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] and [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3] (HPO₄)₂(H₂O)₂], synthesis and characterization, 157, 233 [(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], synthesis and structure, 159, 209 C₅H₁₂NPO₄H₂, synthesis and crystal structure, 161, 307 C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibra- tional spectra, 156, 364 (C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O with layer structure, synthesis, crystal structure, and NMR, 162, 168 [C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes, synthesis and crystal structure, 157, 110 Co₃[BPO₇], synthesis and characterization, 156, 281 ``` Co(NH₃)₆(V_{1.5}P_{0.5})O₆OH, hydrothermal synthesis and crystal struc- ture, 159, 239 $Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O$, synthesis and characterization, **156**, 242 $Cs_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390 $\begin{array}{l} [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10} \\ (NO_3)_7\cdot 12H_2O\ (Ln^{III}=Sm^{III},Gd^{III}), \ synthesis\ and\ characterization, \\ \textbf{161,}\ 214 \end{array}$ Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278 fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, **161**, 259 germanium pyrophosphates, syntheses, structures, and thermal expansion, **156**, 213 (Hg₃)₂(HgO₂)(PO₄)₂, synthesis, crystal structure, and thermal behavior, 157, 68 157, 68 (Hg₃)₃(PO₄)₄, synthesis, crystal structure, and thermal behavior, 157, 68 [Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88 Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, **158**, 94 $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and $25^{\circ}C$, 156, 264 $K_4[Cd_3(HPO_4)_4(H_2PO_4)_2]$, synthesis and layered structure, 162, 188 K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195 δ -KMo₂P₃O₁₃, revised space groups, 159, 7 KSmP₂S₇, structure modification, **160**, 195 Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305 $Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3$, structural and electrochemical study, 158, 169 Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, **162**, 176 linear-chain aluminum phosphates, synthesis by reaction of amine phosphates with Al³⁺ ions, **156**, 185 Li-M-P (M = V,Nb,Ta), synthesis and crystal structure, **156**, 37 γ-Li₃PO₄, ionic conductivity, theoretical study, **161**, 73 γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73 Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2\cdot C_4N_2H_{12}\cdot H_2O,$ synthesis and characterization, **156**, 32 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \ \textbf{159}, \ 7$ Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160. 156 Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195 Na₃Fe(PO₄)₂, glaserite-like structure, **160**, 377 NaHPO₃F · 2.5H₂O, synthesis and crystal structure, 156, 415 Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213 Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415 NaSmP₂S₆, structure modification, 160, 195 NaYbP₂S₆, structure modification, 160, 195 NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8 NbOPO₄, with orthorhombic structure, negative thermal expansion, **160**, 230 (NC₅H₁₂)₂·Zn₃(HPO₃)₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, 160, 4 (NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, 157, 180 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, **156**, 480 Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68 TPCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162.** 69 PbVOP₂O₇ with intersecting tunnel structure, **162**, 354 $M_{10}(PO_4)_6X_2$ (M = Ca, Pb, Ba; X = F, OH), electrical properties, 156, 57 $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, 157, 324 Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7 $Rb_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390 Sb₂O(CH₃PO₃)₂, synthesis and layered structure, 162, 347 α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, **159**, 130 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, $\pmb{161,\,233}$ SrFe₂(PO₄)₂ and Sr₉Fe_{1.5}(PO₄)₇, synthesis and characterization, **162**, 113 Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, hydrothermal synthesis and characterization, **159**, 139 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96 VOPO₄, aldehyde intercalation into, 157, 50 ZrP₂O₇, 3-D incommensurately modulated cubic phase in, symmetry characterization via temperature-dependent electron diffraction, 157, 186 Photoactivity Pd nanosized clusters deposited on titania-modified mesoporous MCM-41, 162, 138 Photoirradiation induction of charge transfer processes with spin transition on CoFe(CN)₅NH₃·6H₂O, **159**, 336 Photoluminescence spectra Ni²⁺- and Mn²⁺-doped sol-gel SiO₂ glass, **160**, 272 SrIn₂O₄ phosphors emitting red light and activated by praseodymium, 156, 84 Piezosensors $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333 Pillaring $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with Fe $_2O_3$ nanoparticles, 160, 435 Piperazine manganese phosphate templated by, synthesis and characterization, 156, 32 Plasma-spray procedure thermal decomposition of hydroxyapatite during, 160, 460 Platinum $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364 Pt complex, intercalation in LDH compounds, 161, 332 $M^{\rm II}$ PtF₆ ($M^{\rm II}$ = Ni,Pd,Cu), preparation, magnetic properties, and pressure-induced transitions, **162**, 333 Pnictogenides Li-M-X systems (M = V,Nb,Ta; X = P,As), synthesis and crystal structure, **156.** 37 Polyarylmethyl polyradicals as organic spin clusters, 159, 460 Polycondensation solid-state, in alkali 4-halogenomethylbenzoates, structural aspects, 156, 61 Polymer capping effect on TiO2 nanoparticles, 158, 180 Polymers molecularly doped system, voltage-dependent luminescence properties, 158, 242 Polyoxovanadates synthesis from aqueous solution, 162, 315 Polysomatic series $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$, new members of, **162**, 322 Polythermal diagram Al-Li-Si system, experimental study and thermodynamic calculation, **156,** 506 $H_2O(NH_4)_2HPO_4-(NH_4)_2SO_4$ between 0 and 25°C, 156, 264 Potassium AIF3-KF-CsF, ternary phase diagram and compositions for Nocolok flux. 161, 80 $BaKCu_3MS_4$ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144 Bi_{2.5}K_{0.5}Nb₂O₉, crystal structure, powder neutron diffraction study, **157,** 160 effects on amorphous to crystalline phase transition of silica, 161, 373 hydrogen coinserted hydrated potassium molybdenum bronzes, direct synthesis and characterization, 159, 87 $K_4Cd_2(C_2O_4)_4 \cdot 4H_2O$, synthesis, structure, and properties, 162, 150 K₄[Cd₃(HPO₄)₄(H₂PO₄)₂], synthesis and layered structure, 162, K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, 156, 400 K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, **160**, 409 K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385 KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334 K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites, pillaring with Fe₂O₃ nanoparticles, 160, 435 δ-KMo₂P₃O₁₃, revised space groups, 159, 7 K_xMo_yW_{1-y}O₃ intergrowth tungsten bronzes, synthesis and microanalysis, 162, 341 KSmP₂S₇, structure modification, **160**, 195 KLnTiO₄ (Ln = La,Nd,Sm,Eu,Gd,Dy), Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, synthesis and crystal structure, 156, 135 $K_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, 161, 416 LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, 148, 316; comments, 156, 251, 253 Na/K alloy for reduction of monoalkyl aluminum(III) compounds, **162**, 225 substitution in Pb₅Ta₁₀O₃₀, effect on ferroelectric properties, 157, 261 Potential energy calculations in structural analysis of 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161, 121 Powder neutron diffraction Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, **159**, 46 Bi_{4.86}Li_{1.14}O₉, ab initio monoclinic structure determination, **162**, 10 $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K): crystal structure, 157, 160 $Bi_{1.1}Sb_{0.9}MoO_6$, **159**, 72 Ca_{0.5}Sr_{0.5}TiO₃ perovskite: space group and structure, **160**, 8 cation-deficient spinels with formula close to Li₂Mn₄O₉: topotactic reactions, structure, and Li intercalation, 160, 108 La₂Mo₄O₁₅: ab initio crystal structure determination, 159, 228 α-La₂W₂O₉: ab initio structure determination, 159, 223 $\text{Li}_2\text{FeTi}(\text{PO}_4)_3$ and $\text{Li}_2\text{FeZr}(\text{PO}_4)_3$: mixed α/β superstructures, 156, $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$: structural study, **158**, 187 LiVO₃: analysis of structural disorder and ionic conductivity from 340 to 890 K, 156, 379 marokite: antiferromagnetic characteristics, 160, 167 Pd₃Mn and Pd₃MnD_{0.7} at high pressure: analysis of magnetic structures, 161, 93 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x): evolution of crystallographic phases, 162, 20 Sr₂Fe₂O₅: crystal and magnetic structures at elevated temperatures, 156, $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, 157, 283 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19 uniaxial orientational order-disorder transitions in Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, 156, 487 Powder X-ray diffraction, see also Synchrotron powder X-ray diffraction $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), 159, 174 Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161, 121 calcium-deficient carbonated hydroxyapatite, 160, 340 CdTeMoO₆ and CoTeMoO₆: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401 CsBSe₃, **157**, 206 germanium pyrophosphates, 156, 213 K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, 156, 135 La₂Mo₄O₁₅: ab initio crystal structure determination, **159**, 228 α-La₂W₂O₉: ab initio structure determination, 159, 223 LiAlB₂O₅: ab initio structure determination, 156, 181 Li-Fe-Mn-O spinel solid solutions, **161**, 152 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, **159**, 103 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251 MgPd₂, MgPd₃, and Mg₃Pd₅, 159, 113 α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; erratum, 160, 292 Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 Na₃Fe(PO₄)₂: glaserite-like structure, **160**, 377 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241 $Ni_{1+x}Se_2$ $CdI_2/NiAs$ type solid solution phase, **161**, 266 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, 159, 191 $Ni_{1+x}Te_2$ $CdI_2/NiAs$ type solid solution phase, **161**, 266 nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, **161,** 31 order-disorder transition in (Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, 161, 348 RbBSe₃, 157, 206 rhodamine B in lactone form, 156, 325 $SbSb_xM_{1-x}O_4$ (M = Nb^V,Ta^V), **161**, 57 $Sr_{1-x}Ba_xZrO_3$, effects of temperature and composition, 161, 106 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x): evolution of crystallographic phases, 162, 20 $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, 157, 283 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19 Sr₇Re₄O₁₉, 160, 45 $Th_2(PO_4)_2HPO_4 \cdot H_2O$, $Th(OH)PO_4$, and $Th_2O(PO_4)_2$, **159**, 139 TIBSe₃, **157**, 206 ZrO₂ crystallization in sol-gel system, 158, 349 Praseodymium $BaPr_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, **159.** 163 La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84 Pr⁴⁺ ions doped in BaHfO₃ perovskite, EPR study, 156, 203 Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, **160**, 1 PrCa₉(VO₄)₇, synthesis and structure, 157, 255 $Pr_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90 $Pr_{1.33}Na_{0.66}Mn_{0.66}Ti_{1.33}O_6$, conductivity and magnetic properties, 161, 294 $\begin{array}{ll} \hbox{[(nPr_4N)(Me_3Sn)_2Ir(CN)_6\cdot 2H_2O]} & \hbox{and} & \hbox{[(nPr_4P)(Me_3Sn)_2Co(CN)_6\cdot 2H_2O]}, \\ \hbox{crystal structures, 157, 324} \end{array}$ PrBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173 Pr₃Si₂C₂, subcell structure, **156**, 1 $Pr_{0.7-x\Box}Sr_{0.3}MnO_3$ perovskites, physical properties, effect of Pr deficiency, **156**, 68 PrTi_{0.5}V_{0.5}O₃, magnetic properties, 156, 452 SrIn₂O₄ red-emitting phosphors activated by, luminescent properties, 156, 84 ### Pressure electronic transition induced by, in $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn)$, **162**, 333 induction of phase transitions in CdGa₂Se₄, 160, 205 lattice distortion in perovskite $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) under high pressure, **160**, 307 Principal component analysis modeling structure-property relationships of superconductive cuprates, 162, 1 Propionaldehyde intercalation into VOPO₄, 157, 50 Prussian blu analogue $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, 328 related building blocks for self-assembly of molecular magnets, 159, 262 Pseudo-fcc cell $Bi_{3.5}V_{1.2}O_{8.25}$ superstructure based on, 161, 410 Pulsed laser deposition PZT pyrochlore thin films on CeO₂ buffered R-plane sapphire substrates, **158**, 40 transparent conducting In₂O₃–ZnO thin films made by, structures and textures, TEM study, **158**, 119 # Pyrazine [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352 Pyridine-iminonitroxide radical [Cr(CN)₆]₂[Ni(IM2-py)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302 # Pyrochlores Bi₂Ru₂O₇, sol-gel synthesis in alkaline medium, 161, 379 (H₂O)[V₂^{III}F₆] and Pyr-VF₃, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266 $A_2B_2O_7$ transformation to fluorite structure AO_2 , Raman spectroscopy and defect chemistry modeling, **160**, 25 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M=Nb,Ta), X-ray structure refinements and strain analysis, **156**, 207 PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40 Sn₂Nb₂O₇, synthesis and characterization, **156**, 349 strain-driven phase transition to defect fluorite in rare earth sesquioxide-stabilized cubic zirconias, **159**, 121 structural relationship to $In(Fe_{1-x}Ti_x)O_{3+x/2}$: at 1300°C in air, **157**, 13 Pyrolysis microporous materials prepared by, mechanical stability and resistance, estimation, **160**, 13 # Q Quadrupole hyperfine interaction at ¹⁸¹Ta in SrHfO₃, temperature dependence, 159, 1 Quantum ferroelectrics $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20 Quantum size effect TiO₂ nanoparticles, 158, 180 Quantum tunneling effects in single-molecule magnets, determination, 159, 253 R ### Raman spectroscopy $CdBa_3(HPO_4)_2(H_2PO_4)_2$, **161**, 97 $Ce_{1-x}Bi_xVO_4$ solid solutions, 158, 254, 264 $Ce_{1-x}Ca_xVO_{4-x}$ (0 $\le x \le 0.41$) solid solutions, **158**, 264 $Ce_{1-x}M_xVO_{4-0.5x}$ (*M* = Pb,Sr,Ca) solid solutions, **158**, 254 α -Co₂SiO₄- α -Ni₂SiO₄, **157**, 102 CsBSe₃, **157**, 206 CsH₅(AsO₄)₂, 161, 9 N,N'-dimethylpiperazinium(2+) hydrogen selenite, 161, 312 β -Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients formed by laser impact, **157**, 94 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, 159, 87 KIn(WO₄)₂, 158, 334 mono-L-valinium nitrate, 158, 1 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, **156**, 370 $[Nd(XeF_2)_n](AsF_6)_3$ (n = 3,2.5), **162**, 243 PbSnS₃ nanorods prepared via iodine transport hydrothermal method, **160**, 50 pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , **160**, 25 RbBSe₃, **157**, 206 TlBSe₃, **157**, 206 WO_{3-x} phases leading to WS_2 formation, 162, 300 # Rare earths rare earth sesquioxide-stabilized cubic zirconias, strain-driven pyrochlore to defect fluorite phase transition, 159, 121 Reactive plasma process reaction of TiAl intermetallics with nitrogen plasma, 157, 339 Reduction in mechanochemical synthesis of Li_{1+x}V₃O₈, **160**, 444 Mg-Fe-O and Mg-Fe-Al-O complex oxides, analysis by TPR and in situ Mössbauer spectroscopy, 161, 38 monoalkyl aluminum(III) compounds, Na/K alloy for, 162, 225 Relativistic effects in β -PbO and other lead(II) oxides: quantum *ab initio* explanation of 207 Pb NMR and XANES spectra, **157**, 220 Relaxor behavior generation by cationic substitutions in Pb₅Ta₁₀O₃₀, **157**, 261 Relaxor ferroelectrics lead-free, solid state chemistry, 162, 260 Resonance effects in nonlinear susceptibilities of Co₃BTCA₂(H₂O)₄, **159**, 379 Reverse micelle method (Fe@Au) nanoparticle synthesis, 159, 26 # Rhenium ${ m Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355 Re₃O₁₀, preparation and crystal structure, 160, 317 $Sr_7Re_4O_{19}$, preparation, crystal structure, magnetic properties, and relationship to $Ba_7Ir_6O_{19}$ structure, **160**, 45 Rhodamine B lactone form, synthesis, characterization, and crystal structure, **156**, 325 Rhodium CeRhIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25 Rh/SiO₂ sol-gel, properties of, effects of pH and metal loading, **158**, 154 TRh_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288 Rubidium β -RbB₅O₈, crystal structure, **161**, 205 RbBSe₃, synthesis, crystal structure, and properties, 157, 206 Rb₂CdSiO₄, synthesis and crystal structure, **162**, 214 (RbCl)₁₀₈ clusters, crystal nucleation at 600, 550, and 500 K, molecular dynamics studies, **159**, 10 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, 160, 409 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299 Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, **158**, 299 RbLa₂Ti₂TaO₁₀ layered perovskites, structure, **158**, 290 RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299 $Rb_{1.12}(NH_4)_{0.88}SO_4\cdot Te(OH)_6,$ thermal analysis and crystal structure at 435 K, 161, 1 RbNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222 Rb'[A₂B₃O₁₀] (A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279 Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7 Rb₃P₆N₁₁, high-pressure high-temperature synthesis and crystal structure, **156**, 390 RbSm₂CuS₄, synthesis, structure, and physical properties, **158**, 299 $Rb_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, **161**, 416 RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 Ruddlesden-Popper phases $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy), synthesized by ion exchange of $HLnTiO_4$, **161**, 225 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered phase, TEM study, **157**, 309 Ruthenium Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113 Bi₂Ru₂O₇ pyrochlore oxide, sol-gel synthesis in alkaline medium, **161**, 379 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, 156, 26 oxidation state in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, 156, 194 R_3 Ru₂C₅ (R = Y,Gd–Er), preparation, properties, and crystal structure, **160**, 77 Ln_3 RuO₇ (Ln =Sm,Eu), magnetic and thermal properties, **158**, 245 [M^{II} Ru^{III}(oxalate)₃] ($M^{II} =$ Mn,Fe,Co,Cu,Zn), and decamethylmetal-locenium cations, layered molecule-based magnets formed by, **159**, 391 TRu_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288 S # Samarium BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237 CsSm₂CuSe₄, synthesis, structure, and physical properties, **158**, 299 [Cu₁₂Sm₆(μ_3 -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀ (NO₃)₇·12H₂O, synthesis and characterization, **161**, 214 K₃Sm₄Cu₅Te₁₀, synthesis and structure, **160**, 409 KSmP₂S₇, structure modification, 160, 195 KSmTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, **161**, 225 NaSmP₂S₆, structure modification, **160**, 195 RbSm₂CuS₄, synthesis, structure, and physical properties, 158, 299 Sm-123 high-temperature superconductor doped with Al, structure of Al defect in, electron density study, **161**, 396 SmCa₉(VO₄)₇, synthesis and structure, **157**, 255 SmCrO₄, magnetic and crystallographic properties, 160, 362 SmOF-SmF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure. 157, 134 Sm₃RuO₇, magnetic and thermal properties, 158, 245 Sm₂Si₂O₇, type K structure at high pressure, **161**, 166 Scandium $ScB_{19+x}Si_y$, floating zone crystal growth and structure analysis, **160**, 394 $ScCa_0(VO_4)_7$, synthesis and structure, **157**, 255 Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142 Scanning electron microscopy Aurivillius oxides with n = 1 produced by mechanochemical activation, **160**, 54 chemical degradation of thermally treated ferrite-superconductor multiphase materials, **160**, 332 Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, **159**, 139 ZrO₂ crystallization in sol-gel system, 158, 349 Sealed quartz tube synthesis $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors, **161**, 355 Second-harmonic generating properties $SbSb_xM_{1-x}O_4$ ($M = Nb^v, Ta^v$), **161**, 57 Seebeck coefficient $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474 Selenium Ag₂Se nanoparticles, synthesis by laser-solid-liquid ablation, **160**, 430 $Bi_{2-x}In_xSe_3$ single crystals, transport properties, **160**, 474 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184 CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34 CdGa₂Se₄, pressure-induced phase transitions, 160, 205 Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, 161. 23 CsBSe₃, synthesis, crystal structure, and properties, 157, 206 CsGd₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 CsLa₂CuSe₄, synthesis, structure, and physical properties, **158**, 299 CsSm₂CuSe₄, synthesis, structure, and physical properties, **158**, 299 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 CuSe and Cu_3Se_2 thin films, chemical deposition and characterization, 158, 49 N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312 $Gd_4TiSe_4O_4$, crystal structure and magnetic properties, 162, 182 K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, syntheses and crystal structures, 157, 289 $(ND_4)_4D_2(SeO_4)_3$ and $(NH_4)_4H_2(SeO_4)_3$, crystal structure below 180 K, **160.** 189 Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, **162**, 122 RbBSe₃, synthesis, crystal structure, and properties, 157, 206 TPnSe (T = Ni,Pd; Pn = P,As,Sb), preparation and crystal structure, **162**, 69 SrBi₂Se₄, synthesis and characterization, 156, 230 TlBSe₃, synthesis, crystal structure, and properties, 157, 206 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198 Semiconductors BaCu₂Te₂, structure and properties, **156**, 44 CdGa₂Se₄, pressure-induced phase transitions, **160**, 205 Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, **161**, 129 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294 Silicon Al-Li-Si system Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria, 156, 500 polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506 BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101 α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102 Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204 Cu_{5.52(8)}Si_{1.04(8)}□_{1.44}Fe₄Sn₁₂S₃₂ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327 $Dy_3Si_2C_2$, subcell and superstructure, 156, 1 electrochemically cycled SnO_2 -lithium thin-film battery doped with, microstructural evolution, 160, 388 $K_2 Ti Si_6 O_{15}$ with corrugated $[Si_6 O_{15}]_{\infty \infty}$ layers, synthesis and crystal structure, 156, 135 Pr₃Si₂C₂, subcell structure, 156, 1 Rb₂CdSiO₄, synthesis and crystal structure, 162, 214 Rh/SiO₂ sol–gel, properties of, effects of pH and metal loading, **158**, 154 $ScB_{19+x}Si_y$, floating zone crystal growth and structure analysis, **160**, 394 A_5Si_3 (A = Ca,Sr,Ba,Eu) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, **159**, 149 Si-Al nanocomposite with hexagonal structure, synthesis and characterization, **158**, 134 SiC, Hi-Nicalon fibers, multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358 SiO₂ amorphous to crystalline phase transition, effects of alkali ions, 161, 373 fused, kinetics of reduction in hydrogen, flow and diffusion analysis, **160**, 247 sol-gel glass doped with Ni²⁺ and Mn²⁺, defects and photoluminescence, **160**, 272 xerogels, modification by fluoride ion-catalyzed treatment, **162**, 371 REE₂Si₂O₇ (REE = Nd,Sm,Eu,Gd), type K structure at high pressure, **161**, 166 Si-Ti and Si-Zr nanocomposites with lamellar structure, synthesis and characterization, **158**, 134 Tb₃Si₂C₂, subcell and superstructure, **156**, 1 $U_3M_2Si_3$ (M = Al,Ga), magnetotransport and heat capacity, **158**, 227 $Y_3Si_2C_2$, subcell and superstructure, **156**, 1 ZrO₂-SiO₂, crystallization in, **158**, 349 Silver Ag⁺, low coordination in chalcogenide environments, **160**, 212 $AgCuO_2$, synthesis, crystal structure, and structural relationships with CuO and $Ag^IAg^{III}O_2$, **162**, 220 Ag₂Cu₂O₃, high-pressure synthesis and electrochemistry, **158**, 82 Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, Mössbauer spectrum, and magnetic behavior, **159**, 46 REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, 161, 67 AgS₂ film, epitaxial growth on cleaved surface of MgO(001), **157**, 86 Ag₂Se nanoparticles, synthesis by laser–solid–liquid ablation, **160**, 430 Ag₂Te and Ag₇Te₄ nanocrystals, sonochemical synthesis, **158**, 260 hingry metal chalcogenide panocrystals, synthesis in alkaline aqueous binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184 $\text{CsGd}_2\text{Ag}_3\text{Se}_5$, synthesis, structure, and physical properties, 158, 299 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 Size effect boehmite crystallite, relationship to bond length, 159, 32 V₂O₅ nanocrystal preparation and properties, **159**, 181 Small-angle X-ray scattering alkali ion effects on amorphous to crystalline phase transition of silica, **161.** 373 Small polaron $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 Sodiur Bi_{2.5}Na_{0.5}Nb₂O₉, crystal structure, powder neutron diffraction study, **157**, 160 effects on amorphous to crystalline phase transition of silica, **161**, 373 hydrogen coinserted hydrated sodium molybdenum bronzes, direct synthesis and characterization, **159**, 87 ionic conductivity in Nasicon structures, modeling, 156, 154 Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176 NaCa₂GeO₄F, synthesis and structure, 160, 33 Na_{1.1}Ca_{1.8}Mn₉O₁₈, synthesis by calcium insertion in Na₄Mn₉O₁₈ tunnel structure, **162**, 34 Na₄Cd₂(C₂O₄)₄·4H₂O, synthesis, structure, and properties, **162**, 150 Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195 Na₃Fe(PO₄)₂, glaserite-like structure, 160, 377 Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129 NaHPO₃F·2.5H₂O, synthesis and crystal structure, **156**, 415 Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213 Na/K alloy for reduction of monoalkyl aluminum(III) compounds, 162, 225 NaLa₆(Os)I₁₂, synthesis and structure, 161, 161 NaLa₂Ti₂TaO₁₀·xH₂O (x = 2,0.9,0) layered perovskites, structure, **158**, 290 Na₂MgInF₇, crystal structure, **159**, 234 Na_xMnO_{2+δ}, synthesis by reduction of aqueous sodium permanganate with sodium iodide, **156**, 331 Na₄Mn₉O₁₈ tunnel structure, calcium insertion in, 162, 34 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (*Ln* = Pr, x = 0.66; Ln =Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294 Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327 Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415 $Na_2M_3Sb_4$ (M = Sr,Ba), synthesis, structure, and properties, 162, 327 NaSmP₂S₆, structure modification, **160**, 195 NaYbP₂S₆, structure modification, **160**, 195 NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8 Sodium iodide reduction of aqueous sodium permanganate, in synthesis of $Na_xMnO_{2+\delta}$, 156, 331 Sodium permanganate aqueous, reduction with sodium iodide, in synthesis of $Na_xMnO_{2+\delta}$, 156, 331 Sol-gel synthesis Bi₂Ru₂O₇ pyrochlore oxide in alkaline medium, 161, 379 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors, **161**, 355 Li-Fe-Mn-O spinel solid solutions, 161, 152 rhodamine B in lactone form, 156, 325 Rh/SiO₂ prepared by, properties of, effects of pH and metal loading, **158**, 154 TiO₂ nanocrystalline ultrafine powder, **156**, 220 Solid solutions $\text{Bi}_{1-x}\text{Cr}_x\text{O}_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solution with 3D incommensurate modulation, **156**, 168 Bi_{4.86}Li_{1.14}O₉-related, characterization, 162, 10 Bi_{2-x}Sb_xMoO₆: structure refinement of Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72 $Ce_{1-x}Bi_xVO_4$ and $Ce_{1-x}M_xVO_{4-0.5x}$ (M = Pb,Sr,Ca), Raman and IR spectroscopy, **158**, 254 β-Ga₂O₃-In₂O₃, with composition gradients, formation by laser impact, 157, 94 In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13 La-Ca-Mn-O system, phase equilibrium, 156, 237 LaOX (X = Cl,Br), synthesis and lattice parameters, 160, 469 Li-Fe-Mn-O spinels, preparation and characterization, 161, 152 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\le x \le 0.166$), synthesis and crystal structure, **160**, 251 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, structure and magnetic properties, 159, $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122 nonstoichiometric rutile-type, in $Fe^{II}F_2$ - $Fe^{III}OF$ system, 161, 31 $PbZr_xTi_{1-x}O_3$, enthalpies of formation, **161**, 402 SbSb_x M_{1-x} O₄ ($M = \text{Nb}^{\text{V}}$,Ta^V), behavior and second-harmonic generating properties, **161**, 57 ${\rm Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437 SrTiO₃-SrZrO₃, crystal structure and phase transitions, 156, 255 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, **156**, 452 $W_x Mo_{(1-x)} S_2$, lamellar, two cation disulfide layers in, **160**, 147 Solvothermal synthesis fluoroaluminophosphate chain AlPO-CJ10, 161, 259 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), **159**, $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, **158**, 68 noncluster vanadium(IV) coordination polymers, 160, 118 Sonochemical synthesis Ag₂Te and Ag₇Te₄ nanocrystals, **158**, 260 Space group Ca_{0.5}Sr_{0.5}TiO₃ perovskite, 160, 8 Specific heat Ba₃NdRu₂O₉ 6H-perovskite, 161, 113 κ-(BETS)₂FeCl₄, **159**, 407 $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362 EuPd₃S₄, 157, 117 ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, 173 Ln_3RuO_7 (Ln = Sm,Eu), 158, 245 Spectroscopy Cs₂CoSiO₄ and Cs₅CoSiO₆, 162, 204 Spin crossover cobaltites(III) and cobaltites(IV) with perovskite or related structure, 162, 282 1,3,5-trithia-2,4,6-triazapentalenyl crystals, comparison with room-temperature, magnetic bistability, **159**, 451 Spin dimer analysis anisotropic spin exchange interaction in CuM_2O_6 (M = Sb,V,Nb), 156, 110 antiferromagnetic spin exchange interactions of magnetic solids with several unpaired electrons per spin site, **156**, 464 Spinels cation-deficient, with formula close to Li₂Mn₄O₉, topotactic reactions, structure, and Li intercalation, **160**, 108 CdCr_{2-x}Ga_xSe₄, metal ion distribution and magnetic properties, **158**, 34 Li-Fe-Mn-O solid solutions, preparation and characterization, **161**, 152 LiMn₂O₄ cathode prepared by tartaric acid gel process, NMR and FTIR studies, **160**, 368 Spin exchange interactions anisotropic, in CuM_2O_6 (M = Sb, V, Nb), spin dimer analysis, **156**, 110 antiferromagnetic, magnetic solids with several unpaired electrons per spin site, spin dimer analysis, **156**, 464 Spin glasses La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce, Pr), formation, **156**, 452 $TICr_5S_{8-y}Se_y$ (y = 1-7), behavior mediated by nonmagnetic sublattice, **158**, 198 Spin ladder compounds $La_8Cu_7O_{19}$, crystal growth, structure, and transport properties, **156**, 422 Spin states cobaltites(III) and cobaltites(IV) with perovskite or related structure, **162**, 282 tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground states, 159, 428 Spin state transition in LaCoO₃ depending on temperature or Sr doping, XAS study, **158**, 208 photo- and dehydration-induced charge transfer processes with, on CoFe(CN)₅NH₃·6H₂O, **159**, 336 Stereochemistry Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72 Strain analysis $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb, Ta) pyrochlores, **156**, 207 Strontium Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, **156**, 445 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, **156**, 26 Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, **160**, 8 Ce_{1-x}Sr_xVO_{4-0.5x} solid solutions, Raman and IR spectroscopy, **158**, 254 (Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order-disorder transition under high-pressure and high-temperature conditions, 161, 348 doping of LaCoO₃, associated spin state transition, XAS study, **158**, 208 Eu₂O₃–SrO–CuO system, compounds and phase relations, **156**, 247 ${\rm Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355 La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117 (La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-δ}, oxidation states of Cu and Ru in, determination by XANES measurements, **156**, 194 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, electronic and magnetic properties due to Co ions, **159**, 215 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143 Na₂Sr₃Sb₄, synthesis, structure, and properties, **162**, 327 $Pr_{0.7-x\square}Sr_{0.3}MnO_3$ perovskites, physical properties, effect of Pr deficiency, **156**, 68 Sr_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, 159, 149 Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106 SrBi₂Se₄, synthesis and characterization, 156, 230 SrBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, 160, 174 $Sr_{1.19}Ca_{0.73}Cu_2O_4$, structure simulation using interatomic potentials, 158, 162 (Sr_{1-x}Ca_x)TiO₃ with composition (x), evolution of crystallographic phases in, **162**, 20 SrCoO₃, electronic structure, **162**, 282 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76 SrCuO₃, structure simulation using interatomic potentials, 158, 162 $MSr_2QCu_2O_{6+z}$ (M = Cu,Hg,Tl/Pb; Q = rare earth,Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, **162**, 1 ${\rm Sr}_3{\rm Fe}_{2-x}{\rm Co}_x{\rm O}_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307 SrFeO_v, electrical properties at high temperature, 158, 320 Sr₂Fe₂O₅, crystal and magnetic structures at elevated temperatures, 156, 292 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, synthesis and characterization, 162. 113 Sr₃Ga₂O₆, crystal structure, **160**, 421 Sr₁₀Ga₆O₁₉, crystal structure, 160, 421 Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, structure determination from powder Xray and neutron diffraction studies, **157**, 283 SrHfO₃, hyperfine interaction at, temperature dependence, 159, 1 $SrIn_2O_4$ red-emitting phosphors activated by praseodymium, luminescent properties, **156**, 84 $SrLaFeVO_6$ double-perovskite oxide, synthesis, structure, and properties, 162, 250 $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19 Sr₂MnGaO_{5+δ}, synthesis, crystal structure, and magnetic properties, 160, 353 Sr[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241 Sr_xBO_3 (B = Co,Ni), magnetic properties, structural and electronic factors governing, **160**, 239 $A'[Sr_2B_3O_{10}]$ (A' = Rb,Cs; B = Nb,Ta), Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279 $Sr_7Re_4O_{19}$, preparation, crystal structure, magnetic properties, and relationship to $Ba_7Ir_6O_{19}$ structure, **160**, 45 Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437 SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, **156**, 255 $Sr_{9/8}TiS_3,\ Sr_{8/7}TiS_3,\ and\ Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3,\ structures\ and\ physical\ properties, effects of metal–metal sigma bonding, <math display="inline">162,\ 103$ $Sr[(UO_2)_2(IO_3)_2O_2](H_2O)$, formation, effect of cation, **161**, 416 $TISr_2CoO_5$, electronic structure, **162**, 282 Structure, see also Band structure; Crystal structure; Defect structure; Electronic structure; Magnetic structure; Superstructure alkali titanium oxides, pseudo-one-dimensional periodic domain boundary structures, **162**, 128 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93 $\text{Bi}_{1-x}\text{Cr}_x\text{O}_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, **156**, 168 Ca₄Nb₂O₉-CaTiO₃ microstructure, 160, 257 in cation-deficient spinels with formula close to Li₂Mn₄O₉, **160**, 108 Cd_{5-\(\eta/2\)}(PO₄)₃Br_{1-\(\eta\)}, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88 CeIrIn₅ and CeRhIn₅ heavy fermion materials, intergrowth structure, 158, 25 $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, 159, 198 CoFe(CN)₅NH₃·6H₂O, effects of dehydration and photo-irradiation, **159**, 336 $Cp_2Mo(dmit)$ with Br^- or BF_4^- , 159, 413 Cr_5B_3 -like, A_5Tt_3 (A = Ca,Sr,Ba,Eu; Tt = Si,Ge,Sn) compounds with, hydrogen impurity effects in, **159**, 149 CuSe and Cu₃Se₂ thin films, 158, 49 [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), isomerism, 159, 352 Dy₃Si₂C₂, subcell and superstructure, 156, 1 electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388 and energy, changes in 2,2-dinitropropane-1,3-diol molecules and crystals, induction by temperature variations, **157**, 296 In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition, TEM study, 158, 119 $K_{0.2} Co_{1.4} [Fe(CN)_6] \cdot 7H_2O,$ microstructural changes induced by thermal treatment, **156**, 400 LiAlB₂O₅, ab initio determination, **156**, 181 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, neutron diffraction study, 158, 187 LiVO₃, disorder in, neutron powder diffraction study from 340 to 890 K, 156, 379 local, in heat-treated oxyhydroxyapatite microcrystals, solid state NMR, XRD, and IR studies, 160, 460 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, **159**, 362 $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network, **159**, 328 Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction studies, **161**, 266 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191 Ni_{1+x}Te₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction studies, **161**, 266 A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), role in magnetic properties, 160, $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M=Nb,Ta) pyrochlores, X-ray structure refinements, **156**, 207 products of high-temperature reactions of metal triangles, effects of counterion, ligand, and metal, **159**, 321 Pr₃Si₂C₂, subcell structure, **156**, 1 pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , Raman spectroscopy and defect chemistry modeling, **160**, 25 related aspects solid-state polycondensation reaction in alkali 4halogenomethylbenzoates, **156**, 61 superconductive cuprates, relationship to properties, modeling by multivariate analysis methods, 162, 1 Tb₃Si₂C₂, subcell and superstructure, 156, 1 TTB-type, Ba₄CeNb₁₀O₃₀ with, crystal structure, 157, 1 $W_x Mo_{(1-x)}S_2$, lamellar solid solutions, two cation disulfide layers in, 160, 147 Y₃Si₂C₂, subcell and superstructure, 156, 1 ZrP₂O₇, 3-D incommensurately modulated cubic phase, **157**, 186 Subcell structure $Dy_3Si_2C_2$, $Pr_3Si_2C_2$, $Tb_3Si_2C_2$, and $Y_3Si_2C_2$, 156, 1 Sulfur AgS_2 film, epitaxial growth on cleaved surface of MgO(001), 157, 86 $BaKCu_3MS_4$ (M=Mn,Co,Ni), electrical and magnetic properties, 157, 144 BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163 $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd; M = Co, Zn), crystal structure and magnetic properties, **159**, 163 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184 charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385 Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, **159**, 413 CrS₂ layers, and MnF₅ chains, compounds consisting of, spin exchange parameters, 156, 464 CuInS₂ nanorods, hydrothermal synthesis and characterization, 161, 179 Cu_{5.52(8)}Si_{1.04(8)}□_{1.44}Fe₄Sn₁₂S₃₂ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327 Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343 EuPd₃S₄, Mössbauer effects and magnetic properties, 157, 117 FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79 $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and 25°C, 156, 264 K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195 KSmP₂S₇, structure modification, 160, 195 LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, **148**, 316; comments, **156**, 251, 253 Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, **158**, 148 MoS₂, hydrothermal synthesis and pressure-related crystallization, **159**, Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195 Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129 NaSmP₂S₆, structure modification, 160, 195 NaYbP₂S₆, structure modification, 160, 195 PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299 Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299 RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299 $Rb_{1.12}(NH_4)_{0.88}SO_4\cdot Te(OH)_6,$ thermal analysis and crystal structure at 435 K, 161, 1 RbSm₂CuS₄, synthesis, structure, and physical properties, **158**, 299 TPnS (T = Ni,Pd; Pn = P,As,Sb), preparation and crystal structure, **162**. 69 $LnSbS_2Br_2$ (Ln = La,Ce), crystal and electronic structures and optical properties, **158**, 218 $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, structures and physical properties, effects of metal-metal sigma bonding, **162**, 103 tin sulfide rod-like nanocrystals, preparation and morphology control via ethanol thermal route, **161**, 190 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198 1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, 159, 451 V_5S_8 , magnetic properties, effects of metal-atom clustering, **160**, 287 $W_xMo_{(1-x)}S_2$ lamellar solid solution, two cation disulfide layers in, **160**, 147 WS_2 nanotube formation via WO_{3-x} reduction, **162**, 300 Superconductivity cuprates, structure-property relationships, modeling by multivariate analysis methods, **162**, 1 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ grown by sol-gel and sealed quartz tube synthesis. **161**, 355 oxide, anionic charge order model, 158, 139 Superconductors in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), T_c 's, 160, 93 ferrite-superconductor multiphase materials, thermally treated, chemical degradation, **160**, 332 Sm-123 high-temperature superconductor doped with Al, structure of Al defect in, electron density study, **161**, 396 Superexchange interactions tunable, spin-1/2 quantum antiferromagnetic chains with, in $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101 Superstructure Bi_{3.5}V_{1.2}O_{8.25}, **161**, 410 Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CdTeMoO₆ and CoTeMoO₆: fluorite-type structure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401 Dy₃Si₂C₂, 156, 1 γ-GeP₂O₇, **156**, 213 mixed α/β , in NASICON ionic conductors, **156**, 305 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135 RbUSb_{0.33}Te₆: periodic modulations of infinite $[Te_x]^{n-}$ chains, **161**, 17 Tb₃Si₂C₂, **156**, 1 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355 Y₃Si₂C₂, **156**, 1 Synchrotron powder X-ray diffraction BaFeO_{2.8- δ} prepared from oxidative thermal decomposition of BaFe[(CN)₅NO]·3H₂O, **160**, 17 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, 156, 32 SrTiO₃-SrZrO₃ solid solution, 156, 255 structural aspects of solid-state polycondensation reaction in alkali 4-halogenomethylbenzoates, **156**, 61 YCuO_{2+x} delafossite: fine structure determination, **156**, 428 Synthesis, see also Hydrothermal synthesis; Sol-gel synthesis; Solvothermal synthesis AgCuO₂, **162**, 220 Ag₂Cu₂O₃ at high pressure, **158**, 82 REAgMg (RE = La, Ce, Nd, Eu, Gd, Tb, Ho, Tm, Yb), **161**, 67 Ag₂Se nanoparticles by laser-solid-liquid ablation, **160**, 430 Ag₂Te and Ag₇Te₄ nanocrystals, **158**, 260 Al(CN)₃, **159**, 244 Al-Ti nanocomposite with lamellar structure, 158, 134 Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, 158, 134 Ba₅Co₅ClO₁₃, **158**, 175 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101 $ReB_{22}C_2N$ (Re = Y, Ho, Er, Tm, Lu), **159**, 174 Be(CN)2, 159, 244 Bi_{1-x}Cr_xO_{1.5+1.5x} (0.05 \leq x \leq 0.15) high-temperature solid solution with 3D incommensurate modulation, **156**, 168 BiMn₆PO₁₂, **157**, 123 binary metal chalcogenide nanocrystals in alkaline aqueous solution, 161, 184 $Ca_3Co_{1+x}Mn_{1-x}O_6$ quasi-one-dimensional oxides, **160**, 293 $[Ca_2CoO_3][CoO_2]_{1.62}$ misfit layer compounds, 160, 322 Ca₃CuMnO₆ quasi-one-dimensional oxides, 160, 293 $Ca_2MnGaO_{5+\delta}$, 158, 100 Ca₂NF, **160**, 134 $Ca_{2-x}Sr_xRuO_4$, **156**, 26 $ACa_9(VO_4)_7$ (A = Bi,rare earth), 157, 255 CdBa₃(HPO₄)₂(H₂PO₄)₂, 161, 97 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, 157, 233 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_1^V_2(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$ in presence of Fe(II)(1,10-phenanthroline)₃ complex, **159**, 209 C₅H₁₂NPO₄H₂, **161**, 307 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, **162**, 168 $Co_3[BPO_7]$, **156**, 281 Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371 NaYbP₂S₆, **160**, 195 $Co(H_2O)_2O_2CC_6H_4CO_2$, **159**, 343 Nb₆Br₈F₇, **158**, 327 Co₂(OH₂)O₂CC₆H₄CO₂, 159, 343 CsBSe₃, 157, 206 $Nb_{28}Ni_{33.5}Sb_{12.5}$, **160**, 450 Cs₂CoSiO₄ and Cs₅CoSiO₆, 162, 204 (NC₅H₁₂)₂·Zn₃(HPO₃)₄ low-density framework built up from fully con-CsGd₂Ag₃Se₅, 158, 299 nected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, Cs₃Gd₄Cu₅Te₁₀, **160**, 409 CsLa₂CuSe₄, 158, 299 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, Cs₃P₆N₁₁ at high pressure and temperature, **156**, 390 CsSm₂CuSe₄, 158, 299 **156,** 370 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 $[Nd(XeF_2)_n](AsF_6)_3$ (n = 3,2.5), **162**, 243 $[Cu_{12}Ln_6(\mu_3-OH)_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9-NO_3)](PF_6)_{10}$ NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, **162**, 347 $(NO_3)_7 \cdot 12H_2O (Ln^{III} = Sm^{III}, Gd^{III}), 161, 214$ ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, [$M(\text{dicyanamide})_2$ pyrazine] (M = Mn,Fe,Co,Ni,Zn), 159, 352 N,N'-dimethylpiperazinium(2 +) hydrogen selenite, **161**, 312 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333 layered perovskites, 158, 279 (Fe@Au) nanoparticles, 159, 26 PbVOP₂O₇ with intersecting tunnel structure, **162**, 354 Gd₃Cu₂Te₇, 159, 186 Pd nanosized clusters deposited on titania-modified mesoporous germanium pyrophosphates, 156, 213 MCM-41, 162, 138 β -HfNCl under high pressure, 159, 80 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, [Hg₆P₄](TiCl₆)Cl, 160, 88 **159.** 308 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors grown by sol-gel polyoxovanadates from aqueous solution, 162, 315 RbBSe₃, 157, 206 and sealed quartz tubes, 161, 355 hydrogen coinserted hydrated sodium and potassium molybdenum Rb₂CdSiO₄, 162, 214 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), 160, 409 bronzes, 159, 87 $In(Fe_{1-x}Ti_x)O_{3+x/2}$, orthorhombic phase with $0.50 \le x \le 0.69$ and RbEr₂Cu₃S₅, **158**, 299 Rb₂Gd₄Cu₄S₉, 158, 299 monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, 157, 13 K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 RbNd₂CuS₄, 158, 299 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), 160, 409 Rb₃P₆N₁₁ at high pressure and temperature, **156**, 390 KSmP₂S₇, 160, 195 RbSm₂CuS₄, 158, 299 $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy) Ruddlesden-Popper phases by Re₃O₁₀, **160**, 317 $R_3 Ru_2 C_5$ (R = Y,Gd-Er), **160,** 77 ion exchange of HLnTiO₄, 161, 225 Sb₂O(CH₃PO₃)₂ with layered structure, 162, 347 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, 156, 135 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, **162**, 250 Si-Al nanocomposite with hexagonal structure, 158, 134 LaMn_{1-x}Li_xO₃ perovskites, 159, 68 Si-Ti nanocomposite with lamellar structure, 158, 134 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, 157, 289 Si-Zr nanocomposite with lamellar structure, 158, 134 Li-M-X systems (M = V,Nb,Ta; X = P,As), 156, 37 α -Sn(HPO₄)₂·H₂O, **159**, 130 $LiCo_{1-x}Fe_xO_2$ system, **156**, 470 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, 161, linear-chain aluminum phosphates by reaction of amine phosphates with Al3+ ions, 156, 185 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), **156**, 349 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ SrBi₂Se₄, 156, 230 Mg(CN)₂, 159, 244 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, 157, 76 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158**, 307 mixed-valence compounds, 159, 51 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, **162**, 113 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19 α-MnO₂, open tunnel oxide precipitated by ozone oxidation, 159, 94; erratum, 160, 292 $Sr_2MnGaO_{5+\delta}$, **160**, 353 MnO₂·0.22H₂O and MnO₂·0.70H₂O, from monoclinic-type LiMnO₂, Sr₇Re₄O₁₉, 160, 45 160, 69 Sr₂ScBiO₆, **162**, 142 molecule-based magnets by charge-transfer salt approach, 159, 420 $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103 Mo-Ni-P ternary phases, 160, 156 Th₃Co₃Sb₄, **162**, 158 $A_x \text{Mo}_v \text{W}_{1-v} \text{O}_3$ (A = K,Ce) intergrowth tungsten bronzes, 162, 341 tin sulfide rod-like nanocrystals via ethanol thermal route, 161, 190 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb),**162**, 90TiO₂ nanocrystalline anatase, 158, 180 NaCa₂GeO₄F, 160, 33 TIBSe₃, 157, 206 TlITlIII(CN)4, 159, 244 Na_{1.1}Ca_{1.8}Mn₉O₁₈, **162**, 34 TPnCh (T = Ni,Pd; Pn = P,As,Sb; Ch = S,Se,Te), 162, 69Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 Na₃Fe(PO₄)₂ with glaserite-like structure, **160**, 377 U₂Cu_{0.78}Te₆, **159**, 186 Na₉Gd₅Sb₈S₂₆, **161**, 129 VO₂ nanopowders, 156, 274 NaHPO₃F · 2.5H₂O, **156**, 415 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355 NaLa₆(Os)I₁₂, **161**, 161 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55; erratum, 161, $Na_xMnO_{2+\delta}$ by reduction of aqueous sodium permanganate with 177 sodium iodide, 156, 331 yttria-stabilized zirconia nanoparticles, by molecular decomposition Na₂NbF₆-(Nb₆Br₄F₁₁), **158**, 327 process, 157, 149 Na₂PO₃F·10H₂O, **156**, 415 TT'_2Zn_{20} (T = Zr, Hf, Nb; T' = Mn, Fe, Ru, Co, Rh, Ni) with $CeCr_2Al_{20}$ type structure, **161**, 288 $Na_2M_3Sb_4$ (M = Sr,Ba), **162**, 327 NaSmP₂S₆, 160, 195 β -ZrNCl under high pressure, **159**, 80 Т Tantalum $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, 160, Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, **161**, 274 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) layered perovskites, structure, 158, 290 Li-Ta-X systems (X = P,As), synthesis and crystal structure, **156**, 37 $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) layered perovskites, structure, **158.** 290 Pb₅Ta₁₀O₃₀, ferroelectric properties, effect of cationic substitutions, **157**, 261 Pb₂(Ta_{2-y}Pb_y)O_{7- δ} (0.0 < y < 0.8) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207 $SbSb_xTa_{1-x}O_4$, solid solution behavior and second-harmonic generating properties, **161**, 57 181Ta probes in SrHfO₃, hyperfine interaction at, temperature depen- dence, **159**, 1 $Ln_3Ta_2N_6$ (Ln = La,Ce,Pr), synthesis, structure, and magnetic proper- ties, **162**, 90 L-Ta₂O₅, and related structures, Moser's C-line, apparent multiplicity m', and modules, **160**, 62 $A'[A_2Ta_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, Tartaric acid gel process $LiMn_2O_4$ spinel cathode prepared by, NMR and FTIR studies, 160, 368 Tartrate Li–Fe–tartrate gels (molar ratio Li/Fe $\leq 1/5$), thermal behavior, **160**, 100 Tellurium Ag₂Te and Ag₇Te₄ nanocrystals, sonochemical synthesis, **158**, 260 BaCu₂Te₂, structure and physical properties, 156, 44 binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution. 161. 184 Bi₂TeO₅, oxidation, thermoanalytical and optical microscopic studies, 161, 365 CdTeMoO₆ and CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo) (\square_2 O₆), **160**, 401 Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409 Gd₃Cu₂Te₇, synthesis and structure, **159**, 186 IrTe₂, preparation under high pressure, theoretical study, 162, 63 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, 160, 409 Ni_{1+x}Te₂ *CdI*₂/*NiAs* type solid solution phase, electron and X-ray diffraction, **161**, 266 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, **160**, 409 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, thermal analysis and crystal structure at 435 K, 161, 1 RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 TPnTe (T=Ni,Pd; Pn=P,As,Sb), preparation and crystal structure, **162**, 69 TlTe, electronic band structure, 157, 193 U₂Cu_{0.78}Te₆, synthesis and structure, **159**, 186 Temperature effects Bi_{2-x}In_xSe₃ transport properties in single crystals, **160**, 474 2,2-dinitropropane-1,3-diol molecules and crystals: structure-energy changes, 157, 296 hyperfine interaction at ¹⁸¹Ta in SrHfO₃, **159**, 1 spin state transition in LaCoO3, XAS study, 158, 208 Sr_{1-x}Ba_xZrO₃ perovskites, high-resolution powder diffraction study, 161, 106 Temperature-programmed reduction Mg-Fe-O and Mg-Fe-Al-O complex oxides, 161, 38 Terbium CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 TbAgMg, synthesis and crystal structures, 161, 67 $TbCa_9(VO_4)_7$, synthesis and structure, 157, 255 Tb₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77 Tb₃Si₂C₂, subcell and superstructure, **156**, 1 Terephthalate layered cobaltous terephthalate, synthesis, crystal structure, and magnetic properties, **159**, 343 Tetracyanoethylene reaction with $\lceil Mn^{II}(t-Bu)_4$ salen \rceil_2 , 159, 403 Tetrahydrofuran $M_4\text{Cl}_8(\text{THF})_6$ (M = Mn,Fe,Co), compounds based on, structural and magnetic study, **159**, 281 Tetrapropylammonium ions metathesis reactions with $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), 157, 324 Tetrapropylphosphonium ions metathesis reactions with $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), 157, 324 Thallium β -Tl₂B₄O₇ containing three-dimensional borate anion, structure, **160**, 139 TIBSe₃, synthesis, crystal structure, and properties, 157, 206 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198 TIFeO₃, structural distortion and chemical bonding, comparison with $AFeO_3$ (A= rare earth), 161, 197 (Tl,Pb) A_2Q Cu $_2$ O $_{6+z}$ (A=Ba,Sr; Q= rare earth, Ca; z=0–1), structure–property relationships, modeling by multivariate analysis methods, **162**, 1 TlSr₂CoO₅, electronic structure, **162**, 282 TITe, electronic band structure, 157, 193 Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244 $Tl_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, **161**, 416 Thermal analysis $C_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, **156**, 364 $(C_2H_{10}N_2)Zr_2F_{10}\cdot H_2O \text{ and } (C_4H_{12}N_2)ZrF_6\cdot H_2O, \textbf{159,} \ 198$ $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O \ (M = Mn,Co,Ni,Cd), 157, 23$ (Hg₃)₂(HgO₂)(PO₄)₂ and (Hg₃)₃(PO₄)₄, **157**, 68 LiKSO₄, 148, 316; comments, 156, 251, 253 $(NH_4)[Ce^{IV}F_2(PO_4)]$, 157, 180 Rb_{1.12}(NH₄)_{0.88}SO₄·Te(OH)₆, **161**, 1 ZrO₂ crystallization in sol-gel system, **158**, 349 Thermal conductivity $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474 Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177 Thermal cycling effect on $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$ resistivity under magnetic field, 160, 1 Thermal decomposition calcium-deficient carbonated hydroxyapatite, 160, 340 $[Eu_2(H_2O)_{12}Mo_8O_{27}]$: formation of $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39}$, 161, 85 hydroxyapatite during plasma-spray procedure, 160, 460 oxidative, BaFe[(CN)₅NO] · 3H₂O, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17 Thermal expansion FeSb₂S₄, **162**, 79 γ-GeP₂O₇, **156**, 213 La-based perovskites, computer simulations, 156, 394 negative, in orthorhombic NbOPO₄, 160, 230 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), **156**, 437 Thermal properties BaZnCl₄-II:Sm²⁺, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407 boehmite, dependence on atom bond lengths and crystallite size, 161, 319 N,N'-dimethylpiperazinium(2+) hydrogen selenite, **161**, 312 Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, **158**, 94 Li-Fe-tartrate gels (molar ratio Li/Fe $\leq 1/5$), 160, 100 Ln_3 RuO₇ (Ln =Sm,Eu), **158**, 245 Thermal stability MgPd₂, MgPd₃, and Mg₃Pd₅, 159, 113 Thermal treatment ferrite-superconductor multiphase materials, associated chemical degradation, 160, 332 $K_{0.2}Co_{1.4}[Fe(CN)_6] \cdot 7H_2O$, associated microstructural changes, 156, 400 Thermodynamics mechanical stability and resistance of microporous materials prepared by pyrolysis, **160**, 13 polythermal equilibria in Al-Li-Si system, 156, 506 Thermoelectric materials SrBi₂Se₄, synthesis and characterization, 156, 230 Thermoelectric power $Yb_5In_2Sb_6$ Zintl phase with narrow band gap, 155, 55; erratum, 161, 177 Thermogravimetry Bi₂TeO₅ oxidation, **161**, 365 LiKSO₄, 148, 316; comments, 156, 251, 253 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251 Nd-Mn-O system: phase equilibrium at 1100°C, **158**, 236 Thermopower LaMnO_{3+ δ}, **160**, 123 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 SrFeO_y at high temperature, **158**, 320 Thin films CuSe and Cu₃Se₂, chemical deposition and characterization, **158**, 49 In₂O₃–ZnO transparent conducting films made by pulsed laser deposition, structures and textures, TEM study, **158**, 119 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143 molecularly doped polymer system, voltage-dependent luminescence properties, ${\bf 158},\,{\bf 242}$ PZT pyrochlore epitaxial films, support-promoted stabilization, **158**, 40 Thiocyanato-complex anions charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with, 159, 385 Thiospinels $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32},$ crystal structure, Mössbauer studies, and electrical properties, 161, 327 Thiourea fluorocyclohexane/thiourea inclusion compounds, temperature-dependent structural properties and crystal twinning, **156**, 16 2-Thioxo-1,3-dithiole-4,5-dithiolate Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413 Thorium Th M_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93 Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158 Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, hydrothermal synthesis and characterization, **159**, 139 Thulium NH₄Tm₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 TmAgMg, synthesis and crystal structures, **161**, 67 TmB₂₂C₂N, synthesis and crystal structure, 159, 174 ATmO₃ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173 Tilt transitions $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20 Tin binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184 $CsSn_2X_5$ compounds (X = Cl,Br), cluster orbital formation in, **160**, 382 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327 electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388 [$(Me_3Sn_3)_3M(CN)_6$] (M = Co,Ir), metathesis reactions with tetrapropylammonium and -phosphonium ions, 157, 324 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191 PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50 $\begin{array}{ll} [(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O] & and \\ 2H_2O], \ crystal \ structures, \ 157, \ 324 \end{array} \\ \end{array}$ probe ions located on Cr_2O_3 microcrystal surface, impact of HF, Mössbauer study, 162, 293 A_5 Sn₃ (A= Ca,Sr,Ba,Eu) compounds with Cr₅B₃-like structures, hydrogen impurity effects in, **159**, 149 $M^{\rm II}{\rm SnF_6}$ ($M^{\rm II}={\rm Ni,Pd,Cu}$), preparation, magnetic properties, and pressure-induced transitions, 162, 333 α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, **159**, 130 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233 $\mathrm{Sn_{1+x}Nb_2O_{6+x}}(x=0.0,0.5,1.0)$, synthesis and characterization, **156**, 349 tin sulfide rod-like nanocrystals, preparation and morphology control via ethanol thermal route, **161**, 190 Ti₁₁(Sb,Sn)₈, structure and physical properties, **157**, 225 itanium alkali titanium oxides, pseudo-one-dimensional periodic domain boundary structures, 162, 128 Al-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134 Al-Ti-Zr nanocomposite with hexagonal structure, synthesis and characterization, **158**, 134 Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, **160**, 257 Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, **160**, 8 $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$ crystallographic shear structure compounds, stability, **161**, 45 $\rm Fe_2O_3-Cr_2O_3-TiO_2,$ phase relations between 1000 and 1300°C, 161, 45 Gd₄TiSe₄O₄, crystal structure and magnetic properties, **162**, 182 [Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88 In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13 $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy), Ruddlesden-Popper phases synthesized by ion exchange of $HLnTiO_4$, **161**, 225 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, synthesis and crystal structure, **156**, 135 La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, **162**, 379 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, syntheses and crystal structures, **157**, $M\text{La}_2\text{Ti}_2\text{TaO}_{10}$ (M = Cs,Rb) layered perovskites, structure, **158**, 290 Li₂FeTi(PO₄)₃, mixed α/β superstructures, **156**, 305 $\text{Li}_{0.5}\text{Mn}_{0.5}\text{Ti}_{1.5}\text{Cr}_{0.5}(\text{PO}_4)_3$, structural and electrochemical study, 158, 169 NaLa₂Ti₂TaO₁₀·xH₂O (x = 2,0.9,0) layered perovskites, structure, 158, 290 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294 PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, **161**, 402 PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40 Si-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134 (Sr_{1-x}Ca_x)TiO₃ with composition (x), evolution of crystallographic phases in, **162**, 20 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437 SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, **156**, 255 $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, structures and physical properties, effects of metal-metal sigma bonding, **162**, 103 TiAl intermetallics, reaction with nitrogen plasma, 157, 339 TiC, formation by combution reaction during mechanical alloying, mechanism, 158, 268 [Ti₂Cl₉]⁻³, magnetic anisotropy, 159, 268 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96 TiO₂, mesoporous MCM-41 modified by, nanosized Pd clusters on, synthesis, characterization, and photoactivity, **162**, 138 TiO2 nanocrystals anatase, preparation, characterization, and spectral studies, **158**, 180 ultrafine powder, preparation, characterization, and low-temperature heat capacities, **156**, 220 TiO_2/γ -Al₂O₃, NiO dispersion on, **157**, 274 Ti₆Pb_{4.8}, short Pb-Pb bonds in, **159**, 134 Ti₁₁(Sb,Sn)₈, structure and physical properties, 157, 225 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, 156, 452 Y₂TiO₅, Raman spectroscopy, **160**, 25 $Y_2Ti_{2-y}Zr_yO_7$ pyrochlore, transformation to fluorite structure, 160, 25 ZrO₂-Gd₂O₃-TiO₂, phase relations at 1500°C, **160**, 302 Topotactic reactions in cation-deficient spinels with formula close to ${\rm Li_2Mn_4O_9}$, 160, 108 Transmission electron microscopy alkali titanium oxides: pseudo-one-dimensional periodic domain boundary structures, **162**, 128 Aurivillius oxides with n = 1 produced by mechanochemical activation, **160**, 54 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), 159, 174 Ca₄Nb₂O₉-CaTiO₃, **160**, 257 CdTeMoO₆ and CoTeMoO₆: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401 electron-doped layered $\text{La}_{2-x}\text{Ca}_{1+2x}\text{Mn}_2\text{O}_7$ orthorhombic phase in 0.8 < x < 1.0 composition range, **157**, 309 In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition: structures and textures, 158, 119 MgF₂ decomposition in, 157, 30 Tris-oxalato transition metals as building blocks for self-assembly of molecular magnets, 159, 262 Tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine ground spin states, 159, 428 Tris[p-(N-oxyl-N-tert-butylamino)phenyl]borane ground spin states, 159, 428 Tris[p-(N-oxyl-N-tert-butylamino)phenyl]methyl ground spin states, 159, 428 1,3,5-Trithia-2,4,6-triazapentalenyl crystals at room temperature, magnetic bistability, comparison with spin crossover transitions, **159**, 451 Tungsten KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334 α -La₂W₂O₉, *ab initio* structure determination from X-ray and neutron powder diffraction, **159**, 223 lead-free relaxor ferroelectrics with tetragonal tungsten bronze structure, solid state chemistry, **162**, 260 A_x Mo_yW_{1-y}O₃ (A = K,Ce) intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135 WC, formation by continuous reaction during mechanical alloying, mechanism, 158, 268 $W_xMo_{(1-x)}S_2$ lamellar solid solution, two cation disulfide layers in, **160**, 147 WO_{3-x} , structure and reduction leading to WS_2 formation, 162, 300 WS_2 nanotube formation via WO_{3-x} reduction, 162, 300 Tunnel structure Na₄Mn₉O₁₈ with, calcium insertion in, **162**, 34 PbVOP₂O₇, intersecting tunnel structure, **162**, 354 Twinning crystal, fluorocyclohexane/thiourea inclusion compounds, 156, 16 U Ultraviolet-visible spectroscopy Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371 TiO₂ nanocrystalline anatase, **158**, 180 Uranium $(C_5H_{14}N_2)_2U_2F_{12}\cdot 5H_2O,$ hydrothermal synthesis, structure, and magnetic properties, $158,\,87$ $(NH_4)_7U_6F_{31}$, hydrothermal synthesis, structure, and magnetic properties. **158**, 87 RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 U₃M₂M'₃ (M = Al,Ga; M' = Si,Ge), magnetotransport and heat capacity, **158**, 227 $U_2Cu_{0.78}Te_6$, synthesis and structure, 159, 186 α -U₃O₈, module based on, in description of L-Ta₂O₅ and related structures, **160**, 62 $A_2[(UO_2)_3(IO_3)_4O_2]$ (A = K,Rb,Tl) and $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr,Ba,Pb), formation, effects of cations, **161**, 416 ٧ Valence nonintegar, Ce in Ce₂Ni₂₂C_{2.75}, **161**, 63 Valeraldehyde intercalation into VOPO₄, 157, 50 Vanadium BaV₁₃O₁₈, crystal structure, 158, 61 Bi₂VO₅ and Bi₂VO_{5.5}, Aurivillius compounds, production by mechanochemical activation, **160**, 54 Bi_{3.5}V_{1.2}O_{8.25}, preparation and characterization, **161**, 410 $ACa_9(VO_4)_7$ (A = Bi,rare earth), synthesis and structure, 157, 255 Cd_{5-\(\eta/2\)}VO₄)₃I_{1-\(\eta\)}, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88 Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, 161. 23 Ce_{1-x}Bi_xVO₄ solid solutions Raman and IR spectroscopy, 158, 254 Raman spectroscopy for $0 \le x \le 0.68$, 158, 264 $Ce_{1-x}Ca_xVO_{4-x}$ ($0 \le x \le 0.41$) solid solutions, Raman spectra, **158**, 264 $Ce_{1-x}M_xVO_{4-0.5x}(M = Pb,Sr,Ca)$ solid solutions, Raman and IR spectroscopy, **158**, 254 - $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure. **159.** 239 - CuV₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, 156, 110 - $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), phase formation and crystal structures, **156**, 339 - Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, **158**, 94 - (H₂O)[V₂^{III}F₆] and Pyr-VF₃ of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266 - ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250 - Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176 - Li-V-X systems (X = P,As), synthesis and crystal structure, **156**, 37 - LiVO₃, structural disorder and ionic conductivity, neutron powder diffraction study from 340 to 890 K, 156, 379 - $\text{Li}_{1+x}V_3O_8$, mechanochemical synthesis, reduction processes in, 160, 444 - $[NH_3(CH_2)_2NH_3]_4[Ga_{4-z}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59 - noncluster vanadium(IV) coordination polymers, solvothermal synthesis, crystal structure, and ion exchange, 160, 118 - PbVOP₂O₇ with intersecting tunnel structure, **162**, 354 - polyoxovanadates, synthesis from aqueous solution, 162, 315 - $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, 156, 452 - VO₂ nanopowders, preparation and characterization, 156, 274 - V₂O₃, antiferromagnetic insulating phase of, AC conductivity, **159**, 41 - V₂O₅ nanocrystals, preparation and characterization, **159**, 181 - VO₂· H₂O needle-like nanocrystals, metastable phase and phase transformation, 157, 250 - VOPO₄, aldehyde intercalation into, 157, 50 - $\rm V_5S_8$, magnetic properties, effects of metal-atom clustering, 160, 287 Vernier modulated phases - anion-excess fluorite-related phases in $LnOF-LnF_3$ systems (Ln = Nd, Sm,Eu,Gd), 157, 134 - Vibronic interaction - effect on magnetic anisotropy, 159, 268 - Voltammetry - Li-Fe-Mn-O spinel solid solutions, 161, 152 - Volume compensation - in cellular paracrystal formation from Co-doped CaO polycrystals, 161, 341 W Water - Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, **160**, 278 - $AlO(OH) \cdot \alpha H_2O$, monoclinic nanocrystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40 - BaAl₂O₃(OH)₂· H₂O with six-membered rings, synthesis and characterization, **161**, 243 - BaFe[(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} prepared from, ab initio structure solution, **160**, 17 - $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 - M_4 Cd₂(C₂O₄)₄· 4H₂O (M = Na,K), synthesis, structure, and properties, **162**, 150 - Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, **161**, 23 - charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bipyrimidine)]·0.15H₂O, **159**, 385 - $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233 - C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, 156, 364 - (C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87 - $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 - (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, synthesis, crystal structure, and NMR, **162**, 168 - Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379 - CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336 - Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 - $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, characterization and magnetic properties, **159**, 302 - [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 - Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, 156, 242 - Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 - $Cu_xM_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, **157**, 23 - [Cu₁₂ $Ln_6(\mu_3$ -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀(NO₃) $_7$ · 12H₂O ($Ln^{III} = Sm^{III}$,Gd^{III}), synthesis and characterization, **161**, 214 - $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and $25^{\circ}C$, 156, 264 - (H₂O)[V₂^{III}F₆] of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, 162, 266 - hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87 - K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400 - Li₂Zn(HPO₄)₂ · 0.66H₂O, synthesis and characterization, **162**, 29 - $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362 - [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328 - $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328 - $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32 - MnO₂·0.22H₂O and MnO₂·0.70H₂O, synthesis from monoclinic-type LiMnO₂, **160**, 69 - [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321 - $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space \\ groups, \ \textbf{159}, \ 7$ - NaHPO₃F·2.5H₂O, synthesis and crystal structure, 156, 415 - Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213 - NaLa₂Ti₂TaO₁₀ · xH₂O (x = 2,0.9,0) layered perovskites, structure, **158**, 290 - Na₂PO₃F·10H₂O, synthesis and crystal structure, 156, 415 - Ni(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166 - polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, 159, 308 - $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$ and $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324 - α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, 159, 130 Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, structure determination from powder X-ray and neutron diffraction studies, **157**, 283 Th₂(PO₄)₂HPO₄·H₂O, hydrothermal synthesis and characterization, $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96 $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr, Ba, Pb), formation, effects of cations, 161, 416 $VO_2 \cdot H_2O$ needle-like nanocrystals, metastable phase and phase transformation, 157, 250 Weberite Na₂MgInF₇, crystal structure, 159, 234 Χ Xenon [Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243 Xerogels silica, modification by fluoride ion-catalyzed treatment, **162**, 371 X-ray absorption fine structure $Li(Mn,M)_2O_4$ (M = Cr,Co,Ni) 5V cathode materials for lithium-ion secondary batteries, in situ study, **156**, 286 X-ray absorption near-edge structure oxidation state determination for Cu and Ru in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, 156, 194 β -PbO, quantum ab initio explanation, 157, 220 pillaring of K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites with Fe₂O₃ nanoparticles, **160**, 435 X-ray absorption spectroscopy $Ce_2Ni_{22}C_{2.75}$, L_m -XAS study, **161**, 63 charge-carrier localization on Mn surface sites in granular LaMnO $_{3+\delta}$, 160, 123 polarized, mercuric bromide intercalated Bi₂Sr₂CaCu₂O_y single crystal, **160.** 39 spin state transition in LaCoO₃ depending on temperature or Sr doping, 158, 208 X-ray diffraction, see also Powder X-ray diffraction activated surface hydrolysis of Al metal into AlO(OH) αH_2O nanocrystals in monoclinic structure, 157, 40 $n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO} (n = 2-5; m = 1), 156, 75$ BaV₁₃O₁₈, 158, 61 $Ca_3Co_{1+x}Mn_{1-x}O_6$ and Ca_3CuMnO_6 quasi-one-dimensional oxides, **160**, 293 CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34 CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413 CsH₅(AsO₄)₂, 161, 9 energy-dispersive, $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x=0.1,0.15,0.2) perovskite: lattice distortion under high pressure, **160**, 307 fluorocyclohexane/thiourea inclusion compounds: temperature-dependent structural properties and crystal twinning, **156**, 16 goethite structural change in methane oxidation, in situ study, 156, 225 $K_2In_{12}Se_{19}$, 161, 385 LiKSO₄, **148**, 316; comments, **156**, 251, 253 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z = 0.075) single crystals, **160**, 178 local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 mono-L-valinium nitrate, **158**, 1 NaYFPO₄, 157, 8 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), **159**, $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb,Ta) pyrochlores: structural refinements. **156.** 207 products of high-temperature reactions of metal triangles, effects of counterion, ligand, and metal, **159**, 321 WO_{3-x} phases leading to WS_2 formation, **162**, 300 X-ray photoelectron spectroscopy $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, **156**, 370 Υ Ytterbium Li₂Yb₅O₄(BO₃)₃ discovered in Li₂O-Ln₂O₃-B₂O₃ phase diagram, structural analysis, **156**, 161 NaYbP₂S₆, structure modification, 160, 195 YbAgMg, synthesis and crystal structures, 161, 67 YbCa₉(VO₄)₇, synthesis and structure, 157, 255 $Yb(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350 Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177 $AYbO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173 Yttrium $Ca_{1-x}Y_xMnO_3$, structural phase diagram, **156**, 458 NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8 NH₄Y₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 YBaCo₂O_{5+x} $(0.00 \le x \le 0.52)$, oxygen nonstoichiometry, structures, and physical properties, **156**, 355 YB₂₂C₂N, synthesis and crystal structure, **159**, 174 YCa₉(VO₄)₇, synthesis and structure, 157, 255 YCuO_{2+x} delafossite, fine structure determination by synchrotron powder diffraction and electron microscopy, **156**, 428 YNbO₄ and YNbO₄:Bi, electronic structures and luminescence properties. 156, 267 Y₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77 $Y_3Si_2C_2$, subcell and superstructure, 156, 1 Y₂TiO₅, Raman spectroscopy, **160**, 25 Y₂Ti_{2-y}Zr_yO₇ pyrochlore, transformation to fluorite structure, **160**, 25 yttria-stabilized zirconia nanoparticles, synthesis by molecular decomposition process, **157**, 149 Ζ Zinc BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237 $BaLn_2ZnS_5$ (Ln = La, Ce, Pr, Nd), crystal structure and magnetic properties, **159**, 163 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, **162**, 168 $[C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2]$ formed by one-dimensional tubes, synthesis and crystal structure, **157**, 110 doping of α-Fe₂O₃, effects on structure and magnetic properties, **156**, 408 In₂O₃–ZnO transparent conducting thin films made by pulsed laser deposition, structures and textures, TEM study, **158**, 119 Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29 (NC₅H₁₂₎₂·Zn₃(HPO₃₎₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, **160**, 4 Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, **156**, 480 $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19 - TT'_2Zn_{20} (T = Zr,Hf,Nb; T' = Mn,Fe,Ru,Co,Rh,Ni) with $CeCr_2Al_{20}$ -type structure, **161**, 288 - Zn-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52 - [ZnAl] layered double hydroxide, platinum complex intercalation into, 161, 332 - Zn(II) complexes with imino nitroxyl diradical, magnetic properties, 159, 455 - Zn-Cr layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52 - [Zn(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352 - [Zn^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391 # Zintl phases Na₂Ba₃Sb₄, **162**, 327 Yb₅In₂Sb₆, with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177 #### Zirconium - Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, synthesis and characterization, **158**, 134 - nBa(Nb,Zr)O₃ + 3mNbO (n = 2–5; m = 1), single-crystal X-ray diffraction studies, **156**, 75 - (C₂H₁₀N₂)Zr₂F₁₀·H₂O and (C₄H₁₂N₂)ZrF₆·H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198 - fluorite-type ceria-zirconia solid solution nanoparticles, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112 - $\text{Li}_2\text{FeZr}(\text{PO}_4)_3$, mixed α/β superstructures, **156**, 305 - PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, **161**, 402 - PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40 - rare earth sesquioxide-stabilized cubic zirconias, strain-driven pyrochlore to defect fluorite phase transition, **159**, 121 - Si-Zr nanocomposite with lamellar structure, synthesis and characterization, 158, 134 - Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106 - SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, 156, 255 - Y₂Ti_{2-y}Zr_yO₇ pyrochlore, transformation to fluorite structure, **160**, 25 yttria-stabilized zirconia nanoparticles, synthesis by molecular decomposition process, **157**, 149 - β-ZrNCl, high-pressure synthesis and crystal structure, 159, 80 - ZrO₂, crystallization in sol-gel system, 158, 349 - ZrO₂-Gd₂O₃-TiO₂, phase relations at 1500°C, 160, 302 - ZrP₂O₇, 3-D incommensurately modulated cubic phase in, symmetry characterization via temperature-dependent electron diffraction, 157, 186 - $ZrT_2'Zn_{20}$ (T' = Mn,Fe,Ru,Co,Rh,Ni) with $CeCr_2Al_{20}$ -type structure, **161.** 288