

Cumulative Subject Index for Volumes 156-1621

Α

Absorption spectra

Nd³⁺ in Nd₂BaCuO₅ and Nd₂BaZnO₅, **162**, 42

Activation energy

sodium ion motion in Nasicon structures, modeling, 156, 154 Aldehydes

intercalation into VOPO₄, 157, 50

Alkali 4-halogenomethylbenzoates

solid-state polycondensation reaction in, structural aspects, 156, 61

effects on amorphous to crystalline phase transition of silica, 161, 373 Alkaline aqueous solutions

synthesis of nanocrystalline binary metal chalcogenides in, 161, 184 Alkali titanium oxides

pseudo-one-dimensional periodic domain boundary structures, 162, 128

related Ag₂FeMn₂(PO₄)₃, neutron diffraction, Mössbauer spectrum, and magnetic behavior, 159, 46

Aluminum

activated surface hydrolysis into AlO(OH) · α H₂O nanocrystals in monoclinic structure, 157, 40

Al(CN)₃, synthesis and structural properties, 159, 244

AIF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux, 161, 80

Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278 Al-Li-Si system

Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria,

polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506

γ-Al₂O₃, NiO dispersion on, **157**, 274

Al-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134

Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, synthesis and characterization, 158, 134

BaAl₂O₃(OH)₂·H₂O with six-membered rings, synthesis and characterization, 161, 243

boehmite, thermal evolution, dependence on atom bond lengths and crystallite size, 161, 319

CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, **157**, 62

[CuAl] layered double hydroxide, platinum complex intercalation into, **161.** 332

defect in Al-doped Sm-123 high-temperature superconductor, structure of, electron density study, 161, 396

fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, 161, 259

LiAlB₂O₅, ab initio structure determination, 156, 181

linear-chain phosphates, synthesis by reaction of amine phosphates with Al³⁺ ions, **156**, 185

Mg-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, 161, 249

[MgAl] layered double hydroxide, platinum complex intercalation into,

Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and in situ Mössbauer spectroscopy, 161, 38

Mn-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162,

Ni-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52

Si-Al nanocomposite with hexagonal structure, synthesis and characterization, 158, 134

TiAl intermetallics, reaction with nitrogen plasma, 157, 339

 TiO_2/γ -Al₂O₃, NiO dispersion on, 157, 274

 $U_3Al_2M'_3$ (M' = Si,Ge), magnetotransport and heat capacity, 158, 227 Zn-Al layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52

[ZnAl] layered double hydroxide, platinum complex intercalation into, 161, 332

Amine phosphates

reaction with Al³⁺ ions: synthesis of linear-chain aluminum phosphates, **156,** 185

Amino acids

direct intercalation into layered double hydroxides by coprecipitation, **162.** 52

Ammonium

H₂O(NH₄)₂HPO₄-(NH₄)₂SO₄, polythermal diagram between 0 and 25°C, 156, 264

(NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, **157,** 180

(NH₄)Cl, mixture with HgCl₂, reactivity with Monel containers, 162, 254 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, 162, 254 $NH_4Ln_3F_{10}$ (Ln = Dy, Ho, Y, Er, Tm), hydrothermal syntheses and

crystal structure, 158, 358

(NH₄)₄H₂(SeO₄)₃, crystal structure below 180 K, 160, 189

(NH₄)₂(NH₃)_x[Ni(NH₃)₂Cl₄], preparation and crystal structure, 162,

NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, **162**, 347

(NH₄)₇U₆F₃₁, hydrothermal synthesis, structure, and magnetic properties, **158**, 87

 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, 156, 480

 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, thermal analysis and crystal structure at 435 K, **161**, 1

ammonium zinc gallophosphate analog of, synthesis and structure, **156,** 480

Anatase

TiO₂ nanocrystals, preparation, characterization, and spectral studies, **158,** 180

¹Boldface numbers indicate volume; lightface numbers indicate pagnation.

Angular overlap model

control of magnetic anisotropy in molecular materials, 159, 253

Anion-excess fluorite

related phases in LnOF-LnF₃ systems (Ln = Nd,Sm,Eu,Gd), characterization and defect structure, **157**, 134

Anionic charge order model

oxide superconductivity, 158, 139

Antiferroelectrics

 $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20

Antiferromagnetic chains

Ba₅Co₅ClO₁₃, **158**, 175

spin-1/2 quantum, with tunable exchange interactions, in $BaCu_2$ ($Si_{1-x}Ge_x$)₂O₇ system, **156**, 101

Antiferromagnetic coupling

 $[M(\text{dicyanamide})_2\text{pyrazine}]$ (M = Mn,Fe,Co,Ni,Zn), 159, 352

Li₂Mn₂(SO₄)₃, 158, 148

polynuclear self-assembled Mn(II) and Co(II) cluster complexes, 159, 308

Antiferromagnetic insulating phase

V₂O₃, AC conductivity, 159, 41

Antiferromagnetic ordering

CdCr_{2-x}Ga_xSe₄ spinel system, **158**, 34

Antiferromagnetism

 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, **159**, 407 [Cp₂Mo(dmit)][Br], ordered antiferromagnetic ground state, **159**, 413 marokite, **160**, 167

 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, **159**, 362

V₂O₃, antiferromagnetic insulator-paramagnetic metal phase transition in V₂O₃, conductivity studies, 159, 41

Antimony

Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72

CuSb₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, **156**, 110

FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79

Li₃CuSbO₅, crystal structure, 156, 321

 $Na_9Gd_5Sb_8S_{26}$, synthesis and crystal structure, 161, 129

 $Na_2M_3Sb_4$ (M = Sr,Ba), synthesis, structure, and properties, **162**, 327 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, **160**, 450

NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, **162**, 347

RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 TSbCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162**, 69

Sb₂O(CH₃PO₃)₂, synthesis and layered structure, 162, 347

 $SbSb_xM_{1-x}O_4$ ($M = Nb^V, Ta^V$), solid solution behavior and second-harmonic generating properties, **161**, 57

LnSbS₂Br₂ (Ln = La,Ce), crystal and electronic structures and optical properties, 158, 218

 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76

Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158

Ti₁₁(Sb,Sn)₈, structure and physical properties, 157, 225

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177

Antiphase boundaries

in K₂In₁₂Se₁₉, **161**, 385

 $Ni_{6\pm x}Se_5$, **162**, 122

Apatite

 $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$ and $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta},$ modified chimney–ladder structures with ladder–ladder and chimney–ladder coupling, **156**, 88

fluoroapatite and hydroxyapatite materials, electrical properties, comparison, **156**, 57

Apparent multiplicity

L-Ta₂O₅ and related structures, 160, 62

Aromatic stacking interactions

 π - π , topological control of two-dimensional Co(II) coordination polymers, **159**, 371

Arsenic

TAsCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162.** 69

 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, 161, 9

Li-M-As (M = V,Nb,Ta), synthesis and crystal structure, **156**, 37

[Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243

Aurivillius oxides

 $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K), crystal structure, powder neutron diffraction study, **157**, 160

with n = 1, production by mechanochemical activation, 160, 54

В

Band gap energy

CuSe and Cu₃Se₂ thin films, 158, 49

KSmP₂S₇, NaSmP₂S₆, and NaYbP₂S₆, **160**, 195

Na₉Gd₅Sb₈S₂₆, **161**, 129

TiO₂ nanocrystalline anatase, 158, 180

Band structure

analysis of low coordination of Ag⁺ and Cu⁺ in chalcogenide environments, **160**, 212

IrTe₂ phases prepared under high pressure, calculations, 162, 63

 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb),**162,**90

Nb₂₈Ni_{33.5}Sb_{12.5}, **160**, 450

SrBi₂Se₄, **156**, 230

 $Sr_{9/8}TiS_3$ and $Sr_{8/7}TiS_3$, effects of metal-metal sigma bonding, 162, 103

Th₃Co₃Sb₄, **162**, 158

TlTe, 157, 193

Barium

 Ba_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, **159**, 149

 $BaAl_2O_3(OH)_2 \cdot H_2O$ with six-membered rings, synthesis and characterization, $161,\,243$

BaBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, **160**, 174

Ba₄CeNb₁₀O₃₀, with TTB-type structure, crystal structure, 157, 1

 $Ba_5Co_5ClO_{13}$, synthesis, crystal structure, and magnetic and electrical properties, 158, 175

Ba_{1.1064}CoO₃, modulated composite structure with two subsystems, **161**, 300

 $(Ba_8Co_6O_{18})_z(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, 162, 322

BaCuO₂, structure simulation using interatomic potentials, 158, 162

 $M\mathrm{Ba_2}Q\mathrm{Cu_2O_{6+z}}$ ($M=\mathrm{Cu,Hg,Tl/Pb};$ $Q=\mathrm{rare}$ earth, Ca; z=0–1), structure–property relationships, modeling by multivariate analysis methods, **162**, 1

 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101

BaCu₂Te₂, structure and physical properties, 156, 44

BaFe[(CN)₅NO] · 3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} prepared from, ab initio structure solution, **160**, 17

BaHfO₃ perovskite, Pr⁴⁺ ions doped in, EPR study, 156, 203

Ba₇Ir₆O₁₉, structural relationship to Sr₇Re₄O₁₉, 160, 45

BaKCu₃MS₄ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144

nBa(Nb,Zr)O₃ + 3mNbO (n = 2–5; m = 1), single-crystal X-ray diffraction studies, **156**, 75

Ba[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241

BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163

Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties,

 $Ba_x BO_3$ (B = Co, Ni), magnetic properties, structural and electronic factors governing, **160**, 239

A'[Ba₂B₃O₁₀] (A' = Rb,Cs; B = Nb,Ta), Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279

 $Ba_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57

 $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd; M = Co, Zn), crystal structure and magnetic properties, 159, 163

Ba[(UO₂)₂(IO₃)₂O₂](H₂O), formation, effect of cation, **161**, 416 BaV₁₃O₁₈, crystal structure, **158**, 61

BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, 162, 237

CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, **161**, 97

 ${\rm Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355

La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117

Na₂Ba₃Sb₄, synthesis, structure, and properties, **162**, 327

Nd₂BaCuO₅ and Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis. **162.** 42

Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106

substitution in $Pb_5Ta_{10}O_{30}$, effect on ferroelectric properties, 157, 261 $YBaCo_2O_{5+x}$ (0.00 $\leq x \leq$ 0.52), oxygen nonstoichiometry, structures, and physical properties, 156, 355

Batteries

alkaline, nickel-cobalt oxyhydride electrodes of, outcome of cobalt in, **162.** 270

electrochemically cycled Si-doped SnO_2 -lithium thin-film battery, microstructural evolution, 160, 388

Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, **162**, 176

lithium-ion secondary batteries, $Li(Mn,M)_2O_4$ (M=Cr,Co,Ni) 5V cathode materials for, in situ XAFS analysis, 156, 286

Benzaldehyde

intercalation into VOPO₄, 157, 50

 $1,\!3,\!5\text{-Benzenetricarb} oxylate$

 $\text{Co}_3\text{BTCA}_2(\text{H}_2\text{O})_4$, resonance in nonlinear susceptibilities, **159**, 379 2,1,3-Benzothiadiazole

Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties. **159.** 371

Berthierite

FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79

Beryllium

Be(CN)₂, synthesis and structural properties, 159, 244

2,2'-Bipyridine

[$\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}$], hydrothermal synthesis and crystal structure, **161**, 173

Bipyrimidine

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bipym)]· 0.15H₂O, **159**, 385

Bis(ethylenedithio)tetraselenathiafulvalene

 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

Bis(ethylenedithio) tetrathiafulvalene

charge transfer salts with thiocyanato-complex anions, 159, 385

Bis(isonicotinato)copper(II) dihydrate

hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315

Bismuth

 $BiCa_9(VO_4)_7$, synthesis and structure, 157, 255

 $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, 156, 168

 $Bi_{2-x}In_xSe_3$ single crystals, transport properties, 160, 474

Bi_{4.86}Li_{1.14}O₉ monoclinic structure, *ab initio* determination from powder neutron diffraction data, **162**, 10

BiMn₆PO₁₂, preparation, structure, and magnetic properties, **157**, 123

Bi₂MoO₆ Aurivillius compound, production by mechanochemical activation, 160, 54

 $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K), crystal structure, powder neutron diffraction study, **157**, 160

Bi₂Ru₂O₇ pyrochlore oxide, sol-gel synthesis in alkaline medium, **161**, 379

Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72

Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39

ABi₂Ta₂O₉ (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, **160**, 174

Bi₂TeO₅, oxidation, thermoanalytical and optical microscopic studies, **161.** 365

Bi₂VO₅ and Bi₂VO_{5.5}, Aurivillius compounds, production by mechanochemical activation, **160**, 54

Bi_{3.5}V_{1.2}O_{8.25}, preparation and characterization, **161**, 410

Ce_{1-x}Bi_xVO₄ solid solutions

Raman and IR spectroscopy, 158, 254

Raman spectroscopy for $0 \le x \le 0.68$, 158, 264

fluorinated Bi-2201 phases, suppression of modulations in, 156, 445

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307

SrBi₂Se₄, synthesis and characterization, 156, 230

Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142

YNbO₄:Bi, electronic structure and luminescence properties, **156**, 267 Bis(*trans*-4-pyridylacrylate)

interpenetration networks formed with Co(II), Cu(II), and Ni(II), hydrothermal syntheses and crystal structures, 157, 166

Bis(salicylaldehyde)ethylenediamine

[Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403

2,5-Bis(trimethylsilyl)thiophene-S,S-dioxide

and related materials, structural aspects, 161, 121

Boehmite

crystallite size and bond lengths, relationship, 159, 32

thermal evolution, dependence on atom bond lengths and crystallite size, **161.** 319

Bonding

BaV₁₃O₁₈: V-V (cation-cation) bond, **158**, 61

 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93

metal–metal sigma bonding, effects on structures and physical properties of $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103

 $R_3 \text{Ru}_2 \text{C}_5$ (R = Y,Gd-Er), 160, 77

short Pb-Pb bonds in Ti₆Pb_{4.8}, **159**, 134

sigma antibonding, effect on magnetic properties of A_xBO_3 ($A={\rm Ca,Sr},$ Ba; $B={\rm Co,Ni},$ 160, 239

Th₃Co₃Sb₄, 162, 158

TlFeO₃, comparison with AFeO₃ (A = rare earth), **161**, 197

Bond length

in boehmite, relationship to crystallite size, 159, 32

role in thermal evolution of boehmite, 161, 319

Bond valence

in modeling of ionic conductivity in Nasicon structures, 156, 154 Boron

 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_c 's, 160, 93

 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, **159.** 174

BN multilayered coatings, deposition onto Hi-Nicalon fibers via continuous LPCVD treatment, 162, 358

Co₃[BPO₇], synthesis and characterization, **156**, 281

 $[Cp_2Mo(dmit)][BF_4^-]$, association into dimers, 159, 413

 α -CsB₅O₈ and γ -CsB₅O₈, crystal structures, **161**, 205

CsBSe₃, synthesis, crystal structure, and properties, 157, 206

LiAlB₂O₅, ab initio structure determination, 156, 181

 $\text{Li}_2 L n_5 \text{O}_4 (\text{BO}_3)_3$ (Ln = Yb, Lu), discovery in $\text{Li}_2 \text{O} - L n_2 \text{O}_3 - \text{B}_2 \text{O}_3$ phase diagram and structural analysis of Yb phase, 156, 161

β-RbB₅O₈, crystal structure, **161**, 205

RbBSe₃, synthesis, crystal structure, and properties, 157, 206

 $ScB_{19+x}Si_{y}$, floating zone crystal growth and structure analysis, **160**, 394 β-Tl₂B₄O₇ containing three-dimensional borate anion, structure, 160,

TlBSe₃, synthesis, crystal structure, and properties, 157, 206

tris[p-(N-oxyl-N-tert-butylamino)phenyl]borane, ground spin states, **159**, 428

κ-(BETS)₂FeBr₄ with superconducting transitions, effect of halogen substitution, 159, 407

 $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$, modified chimney-ladder structures with ladderladder and chimney-ladder coupling, 156, 88

Co(II) coordination polymer $\{[CoBr_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, 159, 371

[Cp₂Mo(dmit)][Br], ordered antiferromagnetic ground state, **159**, 413 CsSn₂Br₅ compounds, cluster orbital formation in, 160, 382

 $[Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}]$ and $[Cu(H_2NCH_2CH_2NH_2)_2]$ [{Cu₅Br₇}], hydrothermal synthesis and X-ray crystal structure, **158,** 55

HgBr₂ intercalated Bi₂Sr₂CaCu₂O_v single crystal, polarized X-ray absorption spectroscopy, 160, 39

LaOBr, mechanochemical synthesis and solid state solutions, 160, 469 Mg(ND₃)₂Br₂, uniaxial orientational order-disorder transitions, neutron diffraction study, 156, 487

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225

Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327

Nb₆Br₈F₇, synthesis and crystal structure, 158, 327

 $LnSbS_2Br_2$ (Ln = La,Ce), crystal and electronic structures and optical properties, 158, 218

3-Bromo-trans-cinnamic acid system

polymorphic phase transformation, 156, 10

Bronze

H_xMoO₃, leaching treatments, 159, 51

hydrogen coinserted hydrated sodium and potassium molybdenum bronzes: characterization and synthesis of purple, blue, and red Mo bronzes, 159, 87

lead-free relaxor ferroelectrics with tetragonal tungsten bronze structure, solid state chemistry, 162, 260

 $A_x \text{Mo}_v \text{W}_{1-v} \text{O}_3$ (A = K,Ce) intergrowth tungsten bronzes, synthesis and microanalysis, 162, 341

tetragonal tungsten bronze structure, Pb-Nb-W-O oxides based on, 161, 135

t-Butanol

 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, 156, 51

Butyraldehyde

intercalation into VOPO₄, 157, 50

С

Cadmium

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184

CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, 161, 97

 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51

CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, 158, 34

CdGa₂Se₄, pressure-induced phase transitions, 160, 205

 $Cd_{5-n/2}(PO_4)_3Br_{1-n}$ modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, 156, 88

CdTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401

 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladderladder and chimney-ladder coupling, 156, 88

Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, **161,** 23

Cu_xCd_{1-x}(HCOO)₂·2H₂O, crystal structure and thermal behavior, **157.** 23

 $K_4[Cd_3(HPO_4)_4(H_2PO_4)_2]$, synthesis and layered structure, 162, 188

 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O$, revised space groups, 159, 7

open-framework oxalates with channels stabilized by alkali metal ions, **162.** 150

Rb₂CdSiO₄, synthesis and crystal structure, 162, 214

Calcium

Bi₂Sr₂CaCu₂O_v, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, 160, 39

 Ca_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, 159, 149

CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, 157, 62

CaBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, **160**, 174

Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, cation ordering types and dielectric properties, 156, 122

Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293

[Ca2CoO3][CoO2]1.62, misfit layer compounds, 4D structural study, 160, 322

Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293

CaCuO₂ and Ca₂CuO₃, structure simulation using interatomic potentials, 158, 162

CaLaFeVO₆ double-perovskite oxide, synthesis, structure, and properties, 162, 250

 $Ca_2MnGaO_{5+\delta}$, synthesis and crystal structure, **158**, 100

CaMn₂O₄ marokite, antiferromagnetism, **160**, 167

Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, 160, 257

Ca[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241

Ca₂NF, preparation and single-crystal structure analysis, 160, 134

Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CaO polycrystals doped with Co, cellular paracrystal formation from, **161**, 341

 Ca_xBO_3 (B = Co,Ni), magnetic properties, structural and electronic factors governing, 160, 239

 $Ca_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57

carbonated hydroxyapatite deficient in, crystal structure and thermal decomposition, 160, 340

 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, 156, 26

Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, 160, 8

Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, 161, 274

 $ACa_9(VO_4)_7$ (A = Bi,rare earth), synthesis and structure, 157, 255

- Ca_{1-x}Y_xMnO₃, structural phase diagram, **156**, 458
- $Ce_{1-x}Ca_xVO_{4-0.5x}$ solid solutions

Raman and IR spectroscopy, 158, 254

Raman spectra for $0 \le x \le 0.41$, **158**, 264

 ${
m Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355

insertion in Na₄Mn₉O₁₈ tunnel structure, 162, 34

 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites, pillaring with Fe_2O_3 nanoparticles, **160**, 435

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307

(La,Ca)CrO₃, thermal expansion in, computer simulation, 156, 394

La-Ca-Mn-O system, phase equilibrium, 156, 237

 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, **157**, 309

NaCa₂GeO₄F, synthesis and structure, 160, 33

 $Na_{1.1}Ca_{1.8}Mn_9O_{18}$, synthesis by calcium insertion in $Na_4Mn_9O_{18}$ tunnel structure, **162**, 34

 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370

Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, **160**, 1

Sr_{1.19}Ca_{0.73}Cu₂O₄, structure simulation using interatomic potentials, 158, 162

 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x), evolution of crystallographic phases in, **162**, 20

substitution in Pb₅Ta₁₀O₃₀, effect on ferroelectric properties, **157**, 261 Calorimetry

differential scanning, see Differential scanning calorimetry

 $PbZr_xTi_{1-x}O_3$ solid solutions: enthalpies of formation, **161**, 402 Capacitance

negative, V₂O₃, **159**, 41

Capronaldehyde

intercalation into VOPO₄, 157, 50

Carbon

Al(CN)₃, synthesis and structural properties, 159, 244

Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, **160**, 278

amorphous, C₆₀ transformation to, under hydrothermal conditions, **160**, 184

 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93

 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, 159, 174

Be(CN)2, synthesis and structural properties, 159, 244

 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51

 M_4 Cd₂(C₂O₄₎₄· 4H₂O (M= Na,K), synthesis, structure, and properties, **162.** 150

Ce₂Ni₂₂C_{2.75}, nonintegar Ce valency in, **161**, 63

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385

 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233

 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209

C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307

C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, 156, 364

 $(C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O$, hydrothermal synthesis, structure, and magnetic properties, **158**, 87

 $(C_2H_{10}N_2)Zr_2F_{10}\cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6\cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198

 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281

 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, synthesis, crystal structure, and NMR, **162**, 168

[C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, 157, 110

Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379

Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166

Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371

CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336

Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343

Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343

Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413

[Cr(CN)₆]₂[Ni(L)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302

[Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, 159, 321

[Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166

 $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn, Co, Ni, Cd), crystal structures and thermal behavior, **157**, 23

 $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$

 $\begin{array}{l} \hbox{[Cu$_{12}$Ln$_6$(μ_3-OH)$_24$(C_5H_5NCH_2CO_2$)$_{12}$($H$_2$O)$_{18}$(μ_9-NO$_3$)]$($PF$_6$)$_{10}$ \\ \hbox{(NO$_3$)$_7} \cdot 12$H$_2$O$($Ln$^{III} = SmIII,GdIII), synthesis and characterization, \\ \textbf{161,} 214 \end{array}$

Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278

[M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352

N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312

Dy₃Si₂C₂, subcell and superstructure, 156, 1

fullerene hydrothermal behavior: transformation to amorphous carbon and carbon nanotube formation, **160**, 184

fullerene superconductors, anionic charge order model, 158, 139

graphite, LiCoO $_2$ film fabrication on, in flowing aqueous solutions at 150°C, **162**, 364

K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400

layered molecule-based magnets formed by decamethylmetallocenium cations, 159, 391

 $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249

 $Mg(CN)_2$, synthesis and structural properties, 159, 244

[Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403

Mn_xCo_{1-x}(O₃PC₆H₅)·H₂O, structure and magnetic properties, **159**, 362 MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293

[Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328

 $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328

 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32

[Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space \\ groups, \ \textbf{159}, \ 7$

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162,

nanotubes, formation from fullerenes under hydrothermal conditions, 160, 184

 $(NC_5H_{12})_2\cdot Zn_3(HPO_3)_4,$ low-density framework built up from fully connected (3,4) net of ZnO_4 tetrahedra and HPO_3 pseudo pyramids, $160,\,4$

 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, and crystal structure, **157**, 241

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59

NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347

 $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166

 $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, solvothermal synthesis and crystal structure, **158**, 68

 $Ln_2O_2CO_3$ II (Ln = La, Nd), 158, 14

polyarylmethyl polyradicals as organic spin clusters, 159, 460

polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308

 $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$ and $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324

Pr₃Si₂C₂, subcell structure, 156, 1

 R_3 Ru₂C₅ (R = Y,Gd-Er), preparation, properties, and crystal structure,

Sb₂O(CH₃PO₃)₂, synthesis and layered structure, **162**, 347

SiC, Hi-Nicalon fibers, multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358

 $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, structure determination from powder X-ray and neutron diffraction studies, 157, 283

Tb₃Si₂C₂, subcell and superstructure, 156, 1

TiC, formation by combution reaction during mechanical alloying, mechanism, 158, 268

 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O \quad and \quad Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O, \ hydrothermal \ synthesis \ and \ structure, \ \textbf{162}, \ 96$

Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244

tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground spin states, **159**, 428

1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, **159**, 451

WC, formation by continuous reaction during mechanical alloying, mechanism, 158, 268

Y₃Si₂C₂, subcell and superstructure, **156**, 1

Cathode materials

Li(Mn,M)₂O₄ (M = Cr,Co,Ni), for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286

Cathodoluminescence spectra

 $SrIn_2O_4$ phosphors emitting red light and activated by praseodymium, 156, 84

Cation disorder

in ferroelectric oxides $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba), 160, 174

Cation ordering

in complex perovskite Ca(Ca_{1/3}Nb_{2/3})O₃, effects on dielectric properties, **156**, 122

Cation vacancy formation

in Ba₄CeNb₁₀O₃₀ with TTB-type structure, **157**, 1

Cerium

 $Ba_4CeNb_{10}O_{30}$, with TTB-type structure, crystal structure, **157**, 1 $BaCe_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties,

CeAgMg, synthesis and crystal structures, 161, 67

Ce_{1-x}Bi_xVO₄ solid solutions

Raman and IR spectroscopy, 158, 254

Raman spectroscopy for $0 \le x \le 0.68$, **158**, 264

 $Ce_{1-x}Ca_xVO_{4-0.5x}$ $(0 \le x \le 0.41)$ solid solutions, Raman spectra, 158, 264

CeIrIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25

 $Ce_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90

 $Ce_2Ni_{22}C_{2.75}$, nonintegar Ce valency in, 161, 63

CeBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

 $CeRhIn_5$ heavy fermion materials, crystal growth and intergrowth structure, 158, 25

CeSbS₂Br₂, crystal and electronic structures and optical properties, 158, 218

CeTi_{0.5}V_{0.5}O₃, magnetic properties, **156**, 452

 $Ce_{1-x}M_xVO_{4-0.5x}(M = Pb,Sr,Ca)$ solid solutions, Raman and IR spectroscopy, **158**, 254

fluorite-type ceria-zirconia solid solution nanoparticles, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112

(NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, **157**, 180

Cesium

AlF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux, **161**, 80

Ce_xMo_yW_{1-y}O₃ intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341

 $\alpha\text{-CsB}_5\mathrm{O}_8$ and $\gamma\text{-CsB}_5\mathrm{O}_8,$ crystal structures, 161, 205

CsBSe₃, synthesis, crystal structure, and properties, 157, 206

 $Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O$, synthesis and characterization, 156, 242

Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204

CsGd₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, **161**, 9

CsLa₂CuSe₄, synthesis, structure, and physical properties, **158**, 299

CsLa₂Ti₂TaO₁₀ layered perovskites, structure, 158, 290

 ${\rm CsNO_3},$ structural phase transitions, molecular dynamics simulation, 160, 222

 $Cs'[A_2B_3O_{10}]$ (A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279

 $\mathrm{Cs_3P_6N_{11}}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390

CsSm₂CuSe₄, synthesis, structure, and physical properties, 158, 299

 $CsSn_2X_5$ compounds (X = Cl,Br), cluster orbital formation in, **160**, 382

CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 effects on amorphous to crystalline phase transition of silica, **161**, 373 Chain compound

fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, 161, 259

MnCr₃(CN)₉ chain compound, magnetic properties, 159, 293

Chalcogenide environment

low coordination of Ag+ and Cu+ in, 160, 212

Charge-carrier localization

on Mn surface sites in granular LaMnO_{3+δ}, **160**, 123

Charge ordering

anionic charge order model for oxide superconductivity, **158**, 139 Charge transfer

photo- and dehydration-induced, with spin transition on CoFe(CN)₅ NH₃·6H₂O, **159**, 336

Charge transfer salts

bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, 159, 385

molecule-based magnets, design and synthesis, 159, 420

Chemical bath deposition

CuSe and Cu₃Se₂ thin films, 158, 49

Chemical vapor deposition

continuous low-pressure, in deposition of multilayered BN coatings onto Hi-Nicalon fibers, **162**, 358

Chimney-ladder structures

 $Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}$ and $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, computer modeling, **156**, 88

Chirality

α-nitronyl nitroxide radicals in solid state, 159, 440

Chlorine

Ba₅Co₅ClO₁₃, synthesis, crystal structure, and magnetic and electrical properties, **158**, 175

BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, 162, 237

 κ -(BETS)₂FeCl₄ with superconducting transitions, effect of halogen substitution, **159**, 407

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: $(BEDT-TTF)_4[Fe(NCS)_6] \cdot CH_2Cl_2$, **159.** 385

 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281

Co(II) coordination polymer {[CoCl₂(btd)]}_n, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371

[Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

CsSn₂Cl₅ compounds, cluster orbital formation in, **160**, 382

 β -HfNCl, high-pressure synthesis and crystal structure, 159, 80

HgCl₂, mixture with (NH₄)Cl, reactivity with Monel containers, **162**, 254

[Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88

LaOCl, mechanochemical synthesis and solid state solutions, 160, 469

 $Mg(ND_3)_2Cl_2$, uniaxial orientational order-disorder transitions, neutron diffraction study, **156**, 487

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225

(NH₄)Cl, mixture with HgCl₂, reactivity with Monel containers, **162**, 254 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, **162**, 254

 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, 162, 254

polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308

(RbCl)₁₀₈ clusters, crystal nucleation at 600, 550, and 500 K, molecular dynamics studies, **159**, 10

 $[Ti_2Cl_9]^{-3}$, magnetic anisotropy, **159**, 268

 β -ZrNCl, high-pressure synthesis and crystal structure, **159**, 80

Chromaticity diagram

 ${\rm SrIn_2O_4}$ phosphors emitting red light and activated by praseodymium, 156, 84

Chromium

 $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, **156**, 168

CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bi-pyrimidine)]·0.15H₂O, **159**, 385

Cr(VI) photoreduction to Cr(III) over nanosized Pd clusters deposited on titania-modified MCM-41, 162, 138

 CrX_2 (X = O,S) layers, and MnF₅ chains, compounds consisting of, spin exchange parameters, **156**, 464

[Cr(CN)₆]₂[Ni(*L*)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302

(Cr,Fe)₂Ti_{n-2}O_{2n-1} crystallographic shear structure compounds, stability, **161**, 45

LnCrO₄ (Ln = Nd,Sm,Dy), magnetic and crystallographic properties, 160, 362

Cr₂O₃ microcrystal surface, tin probe ions on, impact of HF, Mössbauer study, **162**, 293

[Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

[Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

(Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order–disorder transition under high-pressure and high-temperature conditions, **161**, 348

 $Cu_{3+1.5x}Cr_{4-x}(VO_4)_6$, phase formation and crystal structures, 156,

Fe₂O₃-Cr₂O₃-TiO₂, phase relations between 1000 and 1300°C, **161**, 45

GdCrO₃ perovskite, magnetic properties, 159, 204

K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195

(La,Ca)CrO₃, thermal expansion in, computer simulation, **156**, 394

La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84

Li(Mn,Cr)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286

 $Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3$, structural and electrochemical study, 158, 169

MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293

[Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328

 $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328

Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195

 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370

 $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3,$ resistivity under magnetic field, increase by thermal cycling, $160,\,1$

 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198

Zn-Cr layered double hydroxide, amino acid intercalation by coprecipitation, 162, 52

Circular dichroism

α-nitronyl nitroxide radicals: chirality in solid state, **159**, 440 Clathrates

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233

C-line

L-Ta₂O₅ and related structures, **160**, 62

Cluster excision

 $M_4\text{Cl}_8(\text{THF})_6 \ (M = \text{Fe,Co}), \ 159, \ 281$

Cluster models

ionic conductivity of phosphorus oxynitride compounds, 161, 73

Cluster orbitals

formation in $CsSn_2X_5$ compounds (X = Cl,Br), 160, 382

Cobalt

Ba₅Co₅ClO₁₃, synthesis, crystal structure, and magnetic and electrical properties, **158**, 175

Ba_{1.1064}CoO₃, modulated composite structure with two subsystems,

 $(Ba_8Co_6O_{18})_a(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, **162**, 322 $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd), crystal structure and magnetic properties, **159**, 163

BaKCu₃CoS₄, electrical and magnetic properties, 157, 144

Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, **160**, 293

[Ca₂CoO₃][CoO₂]_{1.62}, misfit layer compounds, 4D structural study, **160**, 322

CaO polycrystals doped with, cellular paracrystal formation from, 161, 341

cobaltites(III) and cobaltites(IV) with perovskite or related structure, spin state behavior, **162**, 282

Co₃[BPO₇], synthesis and characterization, 156, 281

Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, **159**, 379

Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166

Co₄Cl₈(THF)₆, compounds based on, structural and magnetic study, 159, 281

[Co(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352

CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336

Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, **159**, 343

 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), phonon modes, **160**, 350

 $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure, **159**, 239

 A_x CoO₃ (A = Ca,Sr,Ba), magnetic properties, structural and electronic factors governing, **160**, 239

Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343

[Co^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391

 α -Co₂SiO₄- α -Ni₂SiO₄, vibrational spectroscopic study, **157**, 102

CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401

 $T\text{Co}_2\text{Zn}_{20}$ (T = Zr,Hf,Nb) with $\text{CeCr}_2\text{Al}_{20}$ -type structure, **161**, 288

Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, 156, 242

Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204

 $\text{Cu}_x \text{Co}_{1-x}(\text{HCOO})_2 \cdot 2\text{H}_2\text{O}$, crystal structure and thermal behavior, 157, 23

K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400

LaCoO₃, spin state transition depending on temperature or Sr doping, XAS study. 158, 208

(La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215

LiCo_{1-x}Fe_xO₂ system, lithium-ion conductors of, preparation and structure, **156**, 470

LiCoO₂ films, direct fabrication on substrates in flowing aqueous solutions at 150°C, 162, 364

Li(Mn,Co)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286

 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, **159**, 103

[(Me₃Sn)₃Co(CN)₆], metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324

 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, structure and magnetic properties, 159,

outcome in nickel-cobalt oxyhydride electrodes of alkaline batteries, **162**, 270

polynuclear self-assembled Co(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308

 $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324

SrCoO₃, electronic structure, 162, 282

 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76

 ${\rm Sr}_3{\rm Fe}_{2-x}{\rm Co}_x{\rm O}_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307

Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158

TlSr₂CoO₅, electronic structure, 162, 282

two-dimensional coordination polymers, topological control by π – π stacking interactions, **159**, 371

YBaCo₂O_{5+x} (0.00 \le x \le 0.52), oxygen nonstoichiometry, structures, and physical properties, **156**, 355

Colossal magnetoresistance

 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117

Combustion

during mechanical alloying, mechanism, 158, 268

Complex impedance

fluoroapatite and hydroxyapatite materials, comparison, 156, 57

Conformational diastereoisomerism

α-nitronyl nitroxide radicals in solid state, 159, 440

Coordination complex

[$\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}$], hydrothermal synthesis and crystal structure, **161**, 173

Coordination polymers

Co(II), Cu(II), and Ni(II) with bis(*trans*-4-pyridylacrylate), hydrothermal syntheses and crystal structures, **157**, 166

Co(II), two-dimensional, topological control by π - π stacking interactions. **159**, 371

Cu(II) networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315

[M(dicyanamide)₂pyrazine] (M = Mn,Fe,Co,Ni,Zn), synthesis, structural isomerism, and magnetism, **159**, 352

noncluster vanadium(IV), solvothermal synthesis, crystal structure, and ion exchange, **160**, 118

Copper

AgCuO₂, synthesis, crystal structure, and structural relationships with CuO and Ag^IAg^{III}O₂, **162**, 220

Ag₂Cu₂O₃, high-pressure synthesis and electrochemistry, 158, 82

BaCuO₂, structure simulation using interatomic potentials, 158, 162

BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101

BaCu₂Te₂, structure and physical properties, 156, 44

 $BaKCu_3MS_4$ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution. 161, 184

Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39

Bi₂Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}, suppression of modulations in, 156, 445 Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293

CaCuO₂ and Ca₂CuO₃, structure simulation using interatomic potentials, **158**, 162

Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

CsLa₂CuSe₄, synthesis, structure, and physical properties, 158, 299

CsSm₂CuSe₄, synthesis, structure, and physical properties, 158, 299

Cu⁺, low coordination in chalcogenide environments, **160**, 212

[CuAl] layered double hydroxide, platinum complex intercalation into, **161.** 332

[{Cu(2,2'-bpy)₂}₂Mo₈O₂₆], hydrothermal synthesis and crystal structure, 161, 173

Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166

Cu(II) complexes with imino nitroxyl diradical, magnetic properties, **159**, 455

Cu(II) coordination networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315

(Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order-disorder transition under high-pressure and high-temperature conditions, 161, 348

 $CuM^{IV}F_6$ ($M^{IV} = Pd,Pt,Sn$), preparation, magnetic properties, and pressure-induced transitions, 162, 333

 $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, 157, 23

 $\lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil \lceil \{Cu_2Br_4\} \rceil$ and $\lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil$ [{Cu₅Br₇}], hydrothermal synthesis and X-ray crystal structure, **158.** 55

CuInS₂ nanorods, hydrothermal synthesis and characterization, 161, 179

CuO, structural relationship with AgCuO₂, 162, 220

 CuM_2O_6 (M = Sb,V,Nb), anisotropic spin exchange interaction in, spin dimer analysis, 156, 110

 $MA_2QCu_2O_{6+z}$ (M = Cu,Hg,Tl/Pb; A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, 162, 1

 $\begin{array}{l} \big[Cu_{12}Ln_{6}(\mu_{3}\text{-}OH)_{24}(C_{5}H_{5}NCH_{2}CO_{2})_{12}(H_{2}O)_{18}(\mu_{9}\text{-}NO_{3}) \big] (PF_{6})_{10} \\ (NO_{3})_{7} \cdot 12H_{2}O \ (\mathit{Ln^{III}} = Sm^{III},Gd^{III}), \ \text{synthesis and characterization,} \end{array}$ 161, 214

Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278 cuprate superconductors, anionic charge order model, 158, 139

[Cu^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, 159, 391

CuSe and Cu₃Se₂ thin films, chemical deposition and characterization, 158, 49

 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, 161, 327

 $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), phase formation and crystal structures, 156, 339

Eu₂O₃-SrO-CuO system, compounds and phase relations, 156, 247 fluorinated Nd₂CuO₄, HREM study, 157, 56

Gd₃Cu₂Te₇, synthesis and structure, **159**, 186

Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa₂Cu₃O_{8+δ} superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, 161, 355

 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, **160**, 409 La₈Cu₇O₁₉ five-leg spin ladder compound, crystal growth, structure, and transport properties, 156, 422

La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-δ}, oxidation states of Cu and Ru in, determination by XANES measurements, 156, 194

Li₃CuSbO₅, crystal structure, 156, 321

 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), synthesis and crystal structure, 160, 251

Nd₂BaCuO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42 (NH₄)₅Cl₂[CuCl₂][CuCl₄], preparation and crystal structure, 162, 254 oxidation state in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, 156, 194

polynuclear self-assembled Cu(II) cluster complexes, synthesis, structure, and magnetism, 159, 308

 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, 160, 409 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299 Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299 RbNd₂CuS₄, synthesis, structure, and physical properties, 158, 299

RbSm₂CuS₄, synthesis, structure, and physical properties, 158, 299 Sr_{1.19}Ca_{0.73}Cu₂O₄, structure simulation using interatomic potentials, **158,** 162

SrCuO₃, structure simulation using interatomic potentials, 158, 162 U₂Cu_{0.78}Te₆, synthesis and structure, **159**, 186

YCuO_{2+x} delafossite, fine structure determination by synchrotron powder diffraction and electron microscopy, 156, 428

Coprecipitation

amino acid intercalation into layered double hydroxides, 162, 52 Crystal chemistry

 $Na_xMnO_{2+\delta}$ prepared by reduction of aqueous sodium permanganate by sodium iodide, 156, 331

 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158,** 307

Crystal field calculations

Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42

Crystal field stabilization energy

α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102 Crystal growth

 $Ca_{2-x}Sr_xRuO_4$ single crystals, 156, 26

CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25

floating zone, $ScB_{19+x}Si_y$, **160**, 394

La₈Cu₇O₁₉ five-leg spin ladder compound, **156**, 422

 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z = 0.075) single crystals, **160**, 178

SrBi₂Se₄, **156**, 230

relationship to bond length in boehmite, 159, 32

role in thermal evolution of boehmite, 161, 319

Crystallization

Crystallite size

Bi_{3.5}V_{1.2}O_{8.25} in triclinic symmetry, **161**, 410

 $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39}$, **161**, 85

β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, induction by laser impact, 157, 94

MoS₂ at different pressures, **159**, 170

V₂O₅ nanocrystals, **159**, 181

ZrO₂ in sol-gel system, 158, 349

Crystallographic properties

 $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362

Crystallographic shear structure compounds

 $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$, stability, **161**, 45

Crystal morphology

α-MnO₂ open tunnel oxide precipitated by ozone oxidation, 159, 94; erratum, 160, 292

Crystal nucleation

(RbCl)₁₀₈ clusters at 600, 550, and 500 K, molecular dynamics studies, **159,** 10

Crystal orbital Hamiltonian population function

TlTe, 157, 193

Crystal structure

AgCuO₂, 162, 220

REAgMg (RE = La, Ce, Nd, Eu, Gd, Tb, Ho, Tm, Yb), 161, 67

Al(CN)₃, 159, 244

alkaline earth cuprates, simulation using interatomic potentials, 158, 162 AlO(OH)· αH₂O monoclinic nanocrystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40

BaAl₂O₃(OH)₂·H₂O with six-membered rings, **161**, 243

Ba₄CeNb₁₀O₃₀ with TTB-type structure, **157**, 1

Ba₅Co₅ClO₁₃, **158**, 175

Ba_{1,1064}CoO₃, modulated composite structure with two subsystems, **161,** 300

 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101

BaCu₂Te₂, 156, 44

 $BaFeO_{2.8-\delta}$ prepared from oxidative thermal decomposition of BaFe[(CN)₅NO]·3H₂O, ab initio solution, **160**, 17

 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144

```
n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO} (n = 2-5; m = 1), single-crystal X-ray diffrac-
                                                                                                           CsLa<sub>2</sub>CuSe<sub>4</sub>, 158, 299
      tion studies, 156, 75
                                                                                                           Cs<sub>3</sub>P<sub>6</sub>N<sub>11</sub>, 156, 390
BaNd<sub>2</sub>MnS<sub>5</sub>, 159, 163
                                                                                                           CsSm<sub>2</sub>CuSe<sub>4</sub>, 158, 299
                                                                                                           CsSn_2X_5 compounds (X = Cl,Br): cluster orbital formation, 160, 382
Ba<sub>3</sub>NdRu<sub>2</sub>O<sub>9</sub> 6H-perovskite, 161, 113
BaLn_2MS_5 (Ln = La,Ce,Pr,Nd; M = Co,Zn), 159, 163
                                                                                                           CsTb<sub>2</sub>Ag<sub>3</sub>Se<sub>5</sub>, synthesis, structure, and physical properties, 158, 299
BaV<sub>13</sub>O<sub>18</sub>, 158, 61
                                                                                                           [\{Cu(2,2'-bpy)_2\}_2Mo_8O_{26}], 161, 173
BaZnCl<sub>4</sub>-II:Sm<sup>2+</sup>, comparison to BaZnCl<sub>4</sub>-I:Sm<sup>2+</sup>, 162, 237
                                                                                                           Cu(C_8H_6NO_2)_2(H_2O)_2 interpenetration networks, 157, 166
ReB_{22}C_2N (Re = Y,Ho,Er,Tm,Lu), 159, 174
                                                                                                           Cu(II) coordination networks with chessboard tunnels, 158, 315
Be(CN)2, 159, 244
                                                                                                           Cu<sub>4.05</sub>Cr<sub>3.3</sub>(VO<sub>4</sub>)<sub>6</sub>, 156, 339
                                                                                                           Cu<sub>2.5</sub>Fe<sub>4.333</sub>(VO<sub>4</sub>)<sub>6</sub>, 156, 339
Bi<sub>4.86</sub>Li<sub>1.14</sub>O<sub>9</sub>, ab initio determination from powder neutron diffraction
      data, 162, 10
                                                                                                           Cu_4Fe_{3.333}(VO_4)_6, 156, 339
BiMn<sub>6</sub>PO<sub>12</sub>, 157, 123
                                                                                                           Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O (M = Mn,Co,Ni,Cd), 157, 23
Bi_{2.5}Me_{0.5}Nb_2O_9 (Me = Na,K), powder neutron diffraction study, 157,
                                                                                                           [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] and [Cu(H_2NCH_2CH_2NH_2)_2]
                                                                                                                 [\{Cu_5Br_7\}], 158, 55
                                                                                                           [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10}
Bi<sub>1.1</sub>Sb<sub>0.9</sub>MoO<sub>6</sub>, 159, 72
2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161,
                                                                                                                 (NO_3)_7 \cdot 12H_2O (Ln^{III} = Sm^{III},Gd^{III}), 161, 214
                                                                                                           Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32} thiospinel, 161, 327
ABi_2Ta_2O_9 (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, 160,
                                                                                                           N,N'-dimethylpiperazinium(2+) hydrogen selenite, 161, 312
                                                                                                           Dy<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, 156, 1
CaAlGaO<sub>4</sub> and Ca<sub>2</sub>AlGaO<sub>5</sub>, 157, 62
                                                                                                           Eu<sub>2</sub>GeS<sub>4</sub>: evidence for ferroelectricity, 158, 343
Ca_3Co_{1+x}Mn_{1-x}O_6 quasi-one-dimensional oxides, 160, 293
                                                                                                           Eu<sub>4</sub>Mo<sub>7</sub>O<sub>27</sub> and Eu<sub>6</sub>Mo<sub>10</sub>O<sub>39</sub>, 161, 85
[Ca2CoO3][CoO2]1.62 misfit layer compounds, analysis in 4D super-
                                                                                                           Eu<sub>2</sub>O<sub>3</sub>-SrO-CuO system-derived solid solutions and compounds, 156,
      space formalism, 160, 322
Ca<sub>3</sub>CuMnO<sub>6</sub> quasi-one-dimensional oxides, 160, 293
                                                                                                           α-Fe<sub>2</sub>O<sub>3</sub>, effect of Zn doping, 156, 408
calcium-deficient carbonated hydroxyapatite, 160, 340
                                                                                                           FeSb<sub>2</sub>S<sub>4</sub>, 162, 79
Ca_2MnGaO_{5+\delta}, 158, 100
                                                                                                           fluoroaluminophosphate chain AlPO-CJ10, 161, 259
Ca<sub>2</sub>NF single crystals, 160, 134
                                                                                                           fluorocyclohexane/thiourea inclusion compounds, temperature-depen-
Ca<sub>3</sub>Ni<sub>8</sub>In<sub>4</sub>, ordered noncentrosymmetric variant of BaLi<sub>4</sub> type, 160, 415
                                                                                                                  dent properties, 156, 16
Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> perovskite, space group assignment, 160, 8
                                                                                                           Gd<sub>3</sub>Cu<sub>2</sub>Te<sub>7</sub>, 159, 186
Ca<sub>2</sub>Ta<sub>2</sub>O<sub>7</sub> doped with niobia, 5M and 7M polytypes, 161, 274
                                                                                                           Gd<sub>4</sub>TiSe<sub>4</sub>O<sub>4</sub>, 162, 182
ACa_9(VO_4)_7 (A = Bi,rare earth), 157, 255
                                                                                                           γ-GeP<sub>2</sub>O<sub>7</sub>, 156, 213
Ca<sub>1-x</sub>Y<sub>x</sub>MnO<sub>3</sub>, phase characterization, 156, 458
                                                                                                           goethite, change in methane oxidation, in situ XRD and IR study,
CdBa<sub>3</sub>(HPO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, 161, 97
                                                                                                                  156, 225
Cd(CN)_2 \cdot 2/3H_2O \cdot t-BuOH, 156, 51
                                                                                                           \beta-HfNCl under high pressure, 159, 80
M_4\text{Cd}_2(\text{C}_2\text{O}_4)_4 \cdot 4\text{H}_2\text{O} (M = \text{Na}, \text{K}), open-framework structure, 162,
                                                                                                           (Hg_3)_2(HgO_2)(PO_4)_2, 157, 68
      150
                                                                                                           (Hg_3)_3(PO_4)_4, 157, 68
Cd(VO_2)_4(SeO_3)_3 \cdot H_2O, 161, 23
                                                                                                           [Hg<sub>6</sub>P<sub>4</sub>](TiCl<sub>6</sub>)Cl, 160, 88
charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thio-
                                                                                                           Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta} superconductors grown by sol-gel
      cyanato-complex anions, 159, 385
                                                                                                                 and sealed quartz tube synthesis, 161, 355
[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] and [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3
                                                                                                           Hg<sub>4</sub>VO(PO<sub>4</sub>)<sub>2</sub> containing Hg<sub>2</sub><sup>2+</sup> dumbbells, 158, 94
      (HPO_4)_2(H_2O)_2], 157, 233
                                                                                                           (H_2O)[V_2^{III}F_6] and Pyr-VF<sub>3</sub> of pyrochlore type, 162, 266
[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], 159, 209
                                                                                                           In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with 0.50 \le x \le 0.69 and
C<sub>5</sub>H<sub>12</sub>NPO<sub>4</sub>H<sub>2</sub>, 161, 307
                                                                                                                  monoclinic phase with 0.73 \le x \le 0.75 at 1300^{\circ}C in air, 157, 13
C<sub>10</sub>H<sub>28</sub>N<sub>4</sub>P<sub>4</sub>O<sub>12</sub>·4H<sub>2</sub>O, 156, 364
                                                                                                           K_4[Cd_3(HPO_4)_4(H_2PO_4)_2], layered structure, 162, 188
(C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O, 158, 87
                                                                                                           K<sub>3</sub>Cr<sub>2</sub>P<sub>3</sub>S<sub>12</sub> one-dimensional compounds, 162, 195
M_4\text{Cl}_8(\text{THF})_6-based compounds with M = \text{Mn,Fe,Co, 159, 281}
                                                                                                           K_3Ln_4Cu_5Te_{10} (Ln = Sm,Gd,Er), 160, 409
(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O, layer structure, 162, 168
                                                                                                           δ-KMo<sub>2</sub>P<sub>3</sub>O<sub>13</sub>, revised space groups, 159, 7
[C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes,
                                                                                                           KSmP<sub>2</sub>S<sub>7</sub>, 160, 195
      157, 110
                                                                                                           K_2TiSi_6O_{15} with corrugated [Si_6O_{15}]_{\infty\infty} layers, 156, 135
Co<sub>3</sub>[BPO<sub>7</sub>], 156, 281
                                                                                                           La<sub>2</sub>Ca<sub>2</sub>MnO<sub>7</sub>, 156, 237
Co(C<sub>8</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>2</sub> interpenetration networks, 157, 166
                                                                                                           La<sub>8</sub>Cu<sub>7</sub>O<sub>19</sub> five-leg spin ladder compound, 156, 422
Co(II) coordination polymers {[CoBr_2(2,1,3-benzothiadiazole)]}_n and
                                                                                                           ALaFeVO<sub>6</sub> (A = Ca,Sr) double-perovskite oxides, 162, 250
       [CoCl_2(btd)]_n, 159, 371
                                                                                                           La<sub>24</sub>Li<sub>20</sub>Ti<sub>5</sub>O<sub>56</sub>, pseudo-close-packed columnar intergrowth structure,
Co(H_2O)_2O_2CC_6H_4CO_2, 159, 343
                                                                                                                  162, 379
Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH, 159, 239
                                                                                                           LaMn<sub>1-x</sub>Li<sub>x</sub>O<sub>3</sub> perovskites, 159, 68
                                                                                                           LaMnO<sub>3+\delta</sub>, 160, 123
Co<sub>2</sub>(OH<sub>2</sub>)O<sub>2</sub>CC<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>, 159, 343
LnCrO_4 (Ln = Nd,Sm,Dy), 160, 362
                                                                                                           La<sub>2</sub>Mo<sub>4</sub>O<sub>1.5</sub>, ab initio determination from X-ray and neutron powder
\alpha-CsB<sub>5</sub>O<sub>8</sub> and \gamma-CsB<sub>5</sub>O<sub>8</sub>, 161, 205
                                                                                                                 diffraction, 159, 228
CsBSe<sub>3</sub>, 157, 206
                                                                                                           La_4Ti_2O_4Se_5 and La_6Ti_3O_5Se_9, 157, 289
Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242
                                                                                                           MLa_2Ti_2TaO_{10} (M = Cs,Rb) layered perovskites, 158, 290
Cs<sub>2</sub>CoSiO<sub>4</sub> and Cs<sub>5</sub>CoSiO<sub>6</sub>, 162, 204
                                                                                                           α-La<sub>2</sub>W<sub>2</sub>O<sub>9</sub>, ab initio determination from X-ray and neutron powder
CsGd<sub>2</sub>Ag<sub>3</sub>Se<sub>5</sub>, 158, 299
                                                                                                                 diffraction, 159, 223
                                                                                                           \text{Li-}M-X systems (M = \text{V,Nb,Ta}; X = \text{P,As}), 156, 37
Cs<sub>3</sub>Gd<sub>4</sub>Cu<sub>5</sub>Te<sub>10</sub>, 160, 409
CsH<sub>5</sub>(AsO<sub>4</sub>)<sub>2</sub>, comparison with CsH<sub>5</sub>(PO<sub>4</sub>)<sub>2</sub> and RbH<sub>5</sub>(AsO<sub>4</sub>)<sub>2</sub>, 161, 9
                                                                                                           Li<sub>8</sub>Al<sub>3</sub>Si<sub>5</sub>-type, in Al-Li-Si system, 156, 500
```

```
LiCo_{1-x}Fe_xO_2 system, 156, 470
                                                                                                                    Pb<sub>3</sub>O<sub>2</sub>(OH)(NO<sub>3</sub>), 158, 78
Li<sub>3</sub>CuSbO<sub>5</sub>, 156, 321
                                                                                                                    Pb<sub>13</sub>O<sub>8</sub>(OH)<sub>6</sub>(NO<sub>3</sub>)<sub>4</sub>, 158, 74
Li<sub>2</sub>Mn<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, 158, 148
                                                                                                                    PbVOP<sub>2</sub>O<sub>7</sub>, intersecting tunnel structure, 162, 354
                                                                                                                    polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes,
Li<sub>0.5</sub>Mn<sub>0.5</sub>Ti<sub>1.5</sub>Cr<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>, 158, 169
\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2 (z = 0.075) single crystals, 160, 178
Li<sub>2</sub>Yb<sub>5</sub>O<sub>4</sub>(BO<sub>3</sub>)<sub>3</sub> discovered in Li<sub>2</sub>O-Ln<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> phase diagram, 156,
                                                                                                                    [(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O] and [(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]
                                                                                                                           2H<sub>2</sub>O<sub>7</sub>, 157, 324
\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29
                                                                                                                    Pr<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, 156, 1
Mg(CN)<sub>2</sub>, 159, 244
                                                                                                                    Pr<sub>0.7-x□</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> perovskites, effect of Pr deficiency, 156, 68
Mg_{1-x}Cu_{2+x}O_3 (0.130 \leq x \leq 0.166), 160, 251
                                                                                                                    \beta-RbB<sub>5</sub>O<sub>8</sub>, 161, 205
MgPd<sub>2</sub>, MgPd<sub>3</sub>, and Mg<sub>3</sub>Pd<sub>5</sub>, 159, 113
                                                                                                                    RbBSe<sub>3</sub>, 157, 206
Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32
                                                                                                                    Rb<sub>2</sub>CdSiO<sub>4</sub>, 162, 214
                                                                                                                    Rb_3Ln_4Cu_5Te_{10} (Ln = Nd,Gd), 160, 409
α-MnO<sub>2</sub> open tunnel oxide precipitated by ozone oxidation, 159, 94;
                                                                                                                    RbEr<sub>2</sub>Cu<sub>3</sub>S<sub>5</sub>, 158, 299
       erratum, 160, 292
[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space
                                                                                                                    Rb<sub>2</sub>Gd<sub>4</sub>Cu<sub>4</sub>S<sub>9</sub>, 158, 299
       groups, 159, 7
                                                                                                                    RbNd<sub>2</sub>CuS<sub>4</sub>, 158, 299
Mo-Ni-P ternary phases, 160, 156
                                                                                                                    Rb<sub>1.12</sub>(NH<sub>4</sub>)<sub>0.88</sub>SO<sub>4</sub>·Te(OH)<sub>6</sub> at 435 K, 161, 1
mono-L-valinium nitrate, 158, 1
                                                                                                                    Rb<sub>3</sub>O<sub>2</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub>, revised space groups, 159, 7
Ln_3T_2N_6 (Ln = La, Ce, Pr; T = Ta, Nb), 162, 90
                                                                                                                    Rb<sub>3</sub>P<sub>6</sub>N<sub>11</sub>, 156, 390
NaCa<sub>2</sub>GeO<sub>4</sub>F, 160, 33
                                                                                                                    RbSm<sub>2</sub>CuS<sub>4</sub>, 158, 299
Na<sub>1.1</sub>Ca<sub>1.8</sub>Mn<sub>9</sub>O<sub>18</sub>, 162, 34
                                                                                                                    Re<sub>3</sub>O<sub>10</sub>, 160, 317
Na<sub>3</sub>Cr<sub>2</sub>P<sub>3</sub>S<sub>12</sub> one-dimensional compounds, 162, 195
                                                                                                                    rhodamine B in lactone form, 156, 325
Na<sub>3</sub>Fe(PO<sub>4</sub>)<sub>2</sub>, glaserite-like structure, 160, 377
                                                                                                                    R_3 Ru_2 C_5 (R = Y,Gd-Er), 160, 77
Na<sub>9</sub>Gd<sub>5</sub>Sb<sub>8</sub>S<sub>26</sub>, 161, 129
                                                                                                                    Sb<sub>2</sub>O(CH<sub>3</sub>PO<sub>3</sub>)<sub>2</sub>, layered structure, 162, 347
NaHPO<sub>3</sub>F · 2.5H<sub>2</sub>O, 156, 415
                                                                                                                    LnSbS_2Br_2 (Ln = La,Ce), 158, 218
                                                                                                                    ScB_{19+x}Si_y, 160, 394
Na<sub>2</sub>In<sub>2</sub>[PO<sub>3</sub>(OH)]<sub>4</sub>·H<sub>2</sub>O, 157, 213
NaLa<sub>6</sub>(Os)I<sub>12</sub>, 161, 161
                                                                                                                    REE_2Si_2O_7 (REE = Nd_Sm_Eu_Gd), type K structure at high pressure,
NaLa_2Ti_2TaO_{10} \cdot xH_2O \ (x = 2,0.9,0) layered perovskites, 158, 290
                                                                                                                           161, 166
Na<sub>2</sub>MgInF<sub>7</sub>, 159, 234
                                                                                                                    Sn_{10}In_{14}P_{22}I_8 and Sn_{14}In_{10}P_{21,2}I_8 with clathrate I structure, 161,
Na_xMnO_{2+\delta} prepared by reduction of aqueous sodium permanganate
       by sodium iodide, 156, 331
                                                                                                                    Sn_{1+x}Nb_2O_{6+x} (x = 0.0,0.5,1.0), synthesis and characterization, 156,
Na_2NbF_6-(Nb_6Br_4F_{11}), 158, 327
                                                                                                                           349
Na<sub>2</sub>PO<sub>3</sub>F·10H<sub>2</sub>O, 156, 415
                                                                                                                    SrBi<sub>2</sub>Se<sub>4</sub>, 156, 230
Na_2M_3Sb_4 (M = Sr,Ba), 162, 327
                                                                                                                    (Sr_{1-x}Ca_x)TiO_3 with composition (x): evolution of crystallographic
NaSmP<sub>2</sub>S<sub>6</sub>, 160, 195
                                                                                                                           phases, 162, 20
NaYbP<sub>2</sub>S<sub>6</sub>, 160, 195
                                                                                                                    Sr_2CoSbO_{6-\delta} and Sr_3CoSb_2O_9 perovskites, 157, 76
NaYFPO<sub>4</sub>, 157, 8
                                                                                                                    Sr<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> at elevated temperature, 156, 292
Nb<sub>6</sub>Br<sub>8</sub>F<sub>7</sub>, 158, 327
                                                                                                                    SrFe_2(PO_4)_2 and Sr_9Fe_{1.5}(PO_4)_7, 162, 113
Nb<sub>28</sub>Ni<sub>33.5</sub>Sb<sub>12.5</sub>, 160, 450
                                                                                                                    Sr<sub>3</sub>Ga<sub>2</sub>O<sub>6</sub>, 160, 421
(NC<sub>5</sub>H<sub>12</sub>)<sub>2</sub> · Zn<sub>3</sub>(HPO<sub>3</sub>)<sub>4</sub> low-density framework built up from fully con-
                                                                                                                    Sr<sub>10</sub>Ga<sub>6</sub>O<sub>19</sub>, 160, 421
       nected (3,4) net of ZnO<sub>4</sub> tetrahedra and HPO<sub>3</sub> pseudo pyramids,
                                                                                                                    Sr(HC<sub>2</sub>O<sub>4</sub>)·1/2(C<sub>2</sub>O<sub>4</sub>)·H<sub>2</sub>O, powder X-ray and neutron diffraction
       160, 4
                                                                                                                           studies, 157, 283
M[N(CN)_2]_2 (M = Mg,Ca,Sr,Ba), 157, 241
                                                                                                                    (Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2} (0.01 \leq x \leq 0.03), 159, 19
Nd_{1-x}Ca_xCrO_4 (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds,
                                                                                                                    Sr_2MnGaO_{5+\delta}, 160, 353
       156, 370
                                                                                                                    Sr<sub>7</sub>Re<sub>4</sub>O<sub>19</sub>, 160, 45
(ND<sub>4</sub>)<sub>4</sub>D<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub> below 180 K, 160, 189
                                                                                                                    Sr<sub>2</sub>ScBiO<sub>6</sub>, 162, 142
[Nd(XeF_2)_{2.5}](AsF_6)_3, 162, 243
                                                                                                                    Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, effects of metal-metal sigma bonding, 162, 103
neptunium-germanium binary system, 156, 313
                                                                                                                    SrTiO<sub>3</sub>-SrZrO<sub>3</sub> solid solution, 156, 255
(NH_4)[Ce^{IV}F_2(PO_4)], 157, 180
                                                                                                                    Tb<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, 156, 1
[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2] (x = 1.65), 159,
                                                                                                                    Th<sub>3</sub>Co<sub>3</sub>Sb<sub>4</sub>, 162, 158
                                                                                                                    Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O
                                                                                                                                                                                             Ti<sub>4</sub>(HPO<sub>4</sub>)<sub>2</sub>(PO<sub>4</sub>)<sub>4</sub>F<sub>2</sub>·
                                                                                                                                                                                  and
(NH<sub>4</sub>)<sub>5</sub>Cl<sub>2</sub>[CuCl<sub>2</sub>][CuCl<sub>4</sub>], 162, 254
                                                                                                                           C_2N_2H_{10} \cdot H_2O, 162, 96
NH_4Ln_3F_{10} (Ln = Dy,Ho,Y,Er,Tm), 158, 358
                                                                                                                    Ti<sub>6</sub>Pb<sub>4.8</sub>: short Pb-Pb bonds, 159, 134
(NH<sub>4</sub>)<sub>4</sub>H<sub>2</sub>(SeO<sub>4</sub>)<sub>3</sub> below 180 K, 160, 189
                                                                                                                    Ti_{11}(Sb,Sn)_8, 157, 225
(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4], 162, 254
                                                                                                                    \beta-Tl<sub>2</sub>B<sub>4</sub>O<sub>7</sub> containing three-dimensional borate anion, 160, 139
NH<sub>4</sub>(SbO)<sub>3</sub>(CH<sub>3</sub>PO<sub>3</sub>)<sub>2</sub> nanotubes, 162, 347
                                                                                                                    TIBSe<sub>3</sub>, 157, 206
(NH_4)_7U_6F_{31}, 158, 87
                                                                                                                    TlFeO<sub>3</sub>, distortion, comparison with AFeO<sub>3</sub> (A = rare earth), 161, 197
(NH_4)_4[Zn_4Ga_4P_8O_{32}] and (NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}], 156, 480
                                                                                                                    Tl<sup>I</sup>Tl<sup>III</sup>(CN)<sub>4</sub>, 159, 244
Ni(C_8H_6NO_2)_2(H_2O)_2 interpenetration networks, 157, 166
                                                                                                                    TPnCh (T = Ni,Pd; Pn = P,As,Sb; Ch = S,Se,Te), 162, 69
Ni(HP<sub>2</sub>O<sub>7</sub>)F·C<sub>2</sub>N<sub>2</sub>H<sub>10</sub> with chain structure, 158, 68
                                                                                                                    U<sub>2</sub>Cu<sub>0.78</sub>Te<sub>6</sub>, 159, 186
noncluster vanadium(IV) coordination polymers, 160, 118
                                                                                                                    Yb<sub>5</sub>In<sub>2</sub>Sb<sub>6</sub> Zintl phase with narrow band gap, 155, 55; erratum, 161, 177
A'[A_2B_3O_{10}] (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type
                                                                                                                    YCuO<sub>2+x</sub> delafossite, fine structure determination by synchrotron
       layered perovskites, 158, 279
                                                                                                                           powder diffraction and electron microscopy, 156, 428
Ln_2O_2CO_3 II (Ln = La, Nd), 158, 14
                                                                                                                    Y<sub>3</sub>Si<sub>2</sub>C<sub>2</sub>, 156, 1
```

 TT'_2 Zn₂₀ (T = Zr,Hf,Nb; T' = Mn,Fe,Ru,Co,Rh,Ni): CeCr₂Al₂₀-type Delafossite structural relationship to $In(Fe_{1-x}Ti_x)O_{3+x/2}$: at 1300°C in air, 157, 13 structure, 161, 288 β -ZrNCl under high pressure, **159**, 80 YCuO_{2+x}, fine structure determination by synchrotron powder diffrac-Crystal twinning tion and electron microscopy, 156, 428 fluorocyclohexane/thiourea inclusion compounds, 156, 16 Density functional theory Curie-Weiss relation ionic conductivity of phosphorus oxynitride compounds, 161, 73 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215 spin state behavior of cobaltites(III) and cobaltites(IV) with perovskite Cyanide or related structure, 162, 282 Al(CN)₃, synthesis and structural properties, 159, 244 TITe, 157, 193 BaFeΓ(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} YNbO₄ and YNbO₄:Bi, 156, 267 prepared from, ab initio structure solution, 160, 17 Deuterium Be(CN)₂, synthesis and structural properties, 159, 244 Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order-disorder $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51 transitions, neutron diffraction study, 156, 487 CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge trans- $(ND_4)_4D_2(SeO_4)_3$, crystal structure below 180 K, **160**, 189 fer processes with spin transition, 159, 336 Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction [$M(dicyanamide)_2$ pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, strucstudies, 161, 93 tural isomerism, and magnetism, 159, 352 Diastereoisomerism K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by therconformational, α-nitronyl nitroxide radicals in solid state, 159, 440 mal treatment, 156, 400 Dicyanamide $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), metathesis reactions with tetra- $[M(dicyanamide)_2 pyrazine]$ (M = Mn,Fe,Co,Ni,Zn), synthesis, strucpropylammonium and -phosphonium ions, 157, 324 tural isomerism, and magnetism, 159, 352 Mg(CN)₂, synthesis and structural properties, 159, 244 Dielectric properties MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, effects of type of cation ordering, chain compound, magnetic properties, 159, 293 **156,** 122 $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, **161**, 274 amide, n = 2.5), 3D network structure, magnetic properties, and Pb₅Ta₁₀O₃₀, effect of cationic substitutions, 157, 261 relevance to Prussian blue analogue, 159, 328 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, 161, 1 $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ V₂O₃, **159**, 41 (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, Dielectrics 328 Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, 160, 257 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, Differential scanning calorimetry and crystal structure, 157, 241 Bi₂TeO₅ oxidation, **161**, 365 pentanuclear complexes bridged by, with high spin ground states S = 6CsH₅(AsO₄)₂, 161, 9 and S = 9, characterization and magnetic properties, 159, 302 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ $\lceil (n Pr_4 N)(Me_3 Sn)_2 Ir(CN)_6 \cdot 2H_2 O \rceil$ and $\lceil (n Pr_4 P)(Me_3 Sn)_2 Co(CN)_6 \cdot 2H_2 O \rceil$ mono-L-valinium nitrate, 158, 1 2H₂O₇, crystal structures, 157, 324 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, 161, 1 Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244 Differential thermal analysis Cyclopentadienyl LiKSO₄, 148, 316; comments, 156, 251, 253 Cp₂Mo(dmit) with Br or BF₄, isolated dimers and ordered antifer-Diffuse scattering romagnetic ground state, 159, 413 in K₂In₁₂Se₁₉, **161**, 385 N,N'-Dimethylpiperazinium(2+) hydrogen selenite D preparation, crystal structure, vibrational spectra, and thermal behavior, **161.** 312 Decamethylmetallocenium cations 2,2-Dinitropropane-1,3-diol layered molecule-based magnets formed by, 159, 391 structure-energy changes, induction by temperature variations, 157, Decomposition 296 Bi_{3.5}V_{1.2}O_{8.25}, **161**, 410 Dion-Jacobson-type perovskites MgF₂ in transmission electron microscope, 157, 30 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) and $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0), molecular, in synthesis of yttria-stabilized zirconia nanoparticles, 157, structure, 158, 290 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta), synthesis, structure, thermal, see Thermal decomposition and electrical conductivity, 158, 279 Defect chemistry model pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , 160, 25 LiVO₃ structure, neutron powder diffraction study from 340 to 890 K, Defect structure **156,** 379 Al defect in Al-doped Sm-123 high-temperature superconductor, elec-Dispersion tron density study, 161, 396 NiO on γ -Al₂O₃ and TiO₂/ γ -Al₂O₃ supports, **157**, 274 anion-excess fluorite-related phases in LnOF-LnF₃ systems (Ln = Nd, Sm, Eu, Gd), 157, 134 $Dy(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350 Ni²⁺- and Mn²⁺-doped sol-gel SiO₂ glass, 160, 272 DyCrO₄, magnetic and crystallographic properties, 160, 362 Dy₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77 induction of charge transfer processes with spin transition on Dy₃Si₂C₂, subcell and superstructure, **156**, 1 CoFe(CN)₅NH₃·6H₂O, 159, 336 KDyTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of

HLnTiO₄, 161, 225

NH₄Dy₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358

electrochemical, Ag₂Cu₂O₃, **158**, 82

Deintercalation

Ε

Editorial

special issue honoring Paul Hagenmuller, 162, 149

Electrical conductivity

AC, in antiferromagnetic insulating phase of V_2O_3 system, 159, 41

 $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474

ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, **162**, 250

 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66, 0.55), **161,** 294

 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, **158**, 279

 $R_3 \text{Ru}_2 \text{C}_5$ (R = Y,Gd-Er), **160**, 77

SrFeO_v at high temperature, 158, 320

Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177

Electrical properties

Ba₅Co₅ClO₁₃, 158, 175

BaCu₂Te₂, 156, 44

 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144

 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, **161**, 327

fluoroapatite and hydroxyapatite materials, comparison, 156, 57

Na_{1.1}Ca_{1.8}Mn₉O₁₈, 162, 34

Pr_{0.7-x□}Sr_{0.3}MnO₃ perovskites, effect of Pr deficiency, 156, 68

SrBi₂Se₄, 156, 230

 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, 157, 76

 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158,** 307

Th₃Co₃Sb₄, 162, 158

Electrical resistivity

 $Ce_2Ni_{22}C_{2.75}$, **161**, 63

HgBr₂ intercalated Bi₂Sr₂CaCu₂O_y single crystal, polarized X-ray absorption spectroscopy, **160**, 39

La₈Cu₇O₁₉ five-leg spin ladder compound, **156**, 422

 $Na_2M_3Sb_4$ (M = Sr,Ba), **162**, 327

Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃ under magnetic field, increase by thermal cycling, **160**, 1

 Ln_3 RuO₇ (Ln =Sm,Eu), **158**, 245

Ti₁₁(Sb,Sn)₈, **157**, 225

Electrochemical cycling

Si-doped $\mathrm{SnO_2}$ -lithium thin-film battery, microstructural evolution in, 160, 388

Electrochemistry

Ag₂Cu₂O₃, 158, 82

Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO₄)₃, **158**, 169

Electroluminescence

molecularly doped polymer system, 158, 242

Electron counts

in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), 160, 93

Electron density study

structure of Al defect in Al-doped Sm-123 high-temperature superconductor, **161**, 396

Electron diffraction

 $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$ polysomatic series, **162**, 322

Ca_{0.5}Sr_{0.5}TiO₃ perovskite: space group and structure, 160, 8

K₂In₁₂Se₁₉, **161**, 385

 α -MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; erratum, **160**, 292

 $Ni_{1+x}Se_2$ and $Ni_{1+x}Te_2$ $CdI_2/NiAs$ type solid solution phases, 161,

nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, **161**, 31

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161.** 135

rare earth sesquioxide-stabilized cubic zirconias: strain-driven pyrochlore to defect fluorite phase transition, **159**, 121 (Sr_{1-x}Ca_x)TiO₃ with composition (x): evolution of crystallographic phases, **162**, 20

 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19

temperature-dependent, symmetry characterization of 3-D incommensurately modulated cubic phase in ZrP₂O₇, **157**, 186

Electron energy loss spectroscopy

MgF₂ decomposition in transmission electron microscope, **157**, 30 Electronic properties

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, due to Co ions, **159**, 215

Electronic structure

 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93

Cs₂CoSiO₄ and Cs₅CoSiO₆, **162**, 204

HgBr₂ intercalated Bi₂Sr₂CaCu₂O_y single crystal, polarized X-ray absorption spectroscopy, **160**, 39

[Hg₆P₄](TiCl₆)Cl, **160**, 88

Li-M-X systems (M = V,Nb,Ta; X = P,As), 156, 37

Li_{1+x}V₃O₈ prepared by mechanochemical synthesis, **160**, 444

 $LnSbS_2Br_2$ (Ln = La,Ce), **158**, 218

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, 161, 233

SrCoO₃, **162**, 282

Ti₆Pb_{4.8}, **159**, 134

TlSr₂CoO₅, 162, 282

TITe, 157, 193

tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, 159, 428

 $Yb_5In_2Sb_6$ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177 $YNbO_4$ and $YNbO_4$:Bi, **156**, 267

Electron microdiffraction

(Sr_{1-x}Ca_x)TiO₃ with composition (x): evolution of crystallographic phases, **162**, 20

Electron microscopy, see also High-resolution electron microscopy

α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; *erratum*, **160**, 292

 $A_x Mo_y W_{1-y} O_3$ (A = K,Ce) intergrowth tungsten bronzes, 162, 341

YCuO_{2+x} delafossite: fine structure determination, **156**, 428

Electron paramagnetic resonance

Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371

 $\text{Li}_{1+x}\text{V}_3\text{O}_8$: reduction processes in mechanochemical synthesis, **160**, 444 Pr^{4+} ions doped in BaHfO₃ perovskite, **156**, 203

Electron probe microanalysis

Mo-Ni-P ternary phases, 160, 156

nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, 161. 31

Energy-dispersive X-ray diffraction

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite: lattice distortion under high pressure, **160**, 307

Energy-dispersive X-ray spectroscopy

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135

Enthalpy of formation

lead zirconate titanate solid solution, 161, 402

Epitaxial films

AgS₂, growth on cleaved surface of MgO(001), 157, 86

 $La_{1-x}Sr_xMnO_{3+\delta}$, excess oxygen in, **156**, 143

PZT pyrochlores, support-promoted stabilization, 158, 40

EPR, see Electron paramagnetic resonance

Erbium

ErB₂₂C₂N, synthesis and crystal structure, 159, 174

ErCa₉(VO₄)₇, synthesis and structure, **157**, 255

 $AErO_3$ (A=La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

Er₃Ru₂C₅, preparation, properties, and crystal structure, **160**, 77

K₃Er₄Cu₅Te₁₀, synthesis and structure, **160**, 409

NH₄Er₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 RbEr₂Cu₃S₅, synthesis, structure, and physical properties, **158**, 299 Ethanol thermal route

preparation and morphology control of rod-like nanocrystalline tin sulfides, **161**, 190

Ethylenediamine

 $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$

Europium

 $\text{Eu}_5 T t_3$ (T t = Si, Ge, Sn) compounds with $\text{Cr}_5 B_3$ -like structures, hydrogen impurity effects in, **159**, 149

EuAgMg, synthesis and crystal structures, 161, 67

EuCa₉(VO₄)₇, synthesis and structure, 157, 255

Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343

 $\rm Eu_4Mo_7O_{27}$ and $\rm Eu_6Mo_{10}O_{39},$ crystallization and structural characterization, $161,\,85$

EuOF-EuF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, 157, 134

Eu₂O₃-SrO-CuO system, compounds and phase relations, 156, 247

EuPd₃S₄, Mössbauer effects and magnetic properties, **157**, 117

Eu₃RuO₇, magnetic and thermal properties, 158, 245

Eu₂Si₂O₇, type K structure at high pressure, **161**, 166

KEuTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225

EXAFS, see Extended X-ray absorption fine structure

Exchange splittings

Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42

Extended Hückel tight binding calculations

spin state behavior of cobaltites(III) and cobaltites(IV) with perovskite or related structure, 162, 282

Extended networks

three-dimensional, formation by self-assembly of molecular magnets, **159**, 262

Extended X-ray absorption fine structure

 $W_x Mo_{(1-x)}S_2$, lamellar solid solutions: detection of two cation disulfide layers, **160**, 147

Zn doping effects on α -Fe₂O₃, **156**, 408

F

Faradaic efficiency

 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), **156**, 437

Far-infrared spectroscopy

phonon modes of $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La, Nd, Dy, Ho, Yb), **160**, 350 Fermion materials

heavy, CeIrIn₅ and CeRhIn₅, crystal growth and intergrowth structure, **158**, 25

Ferrimagnets

[Mn(L)]₃[Cr(CN)₆]₂·nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328

Ferrite-superconductor composites

thermally treated multiphase materials, chemical degradation, **160**, 332

Ferroelectric oxides

 $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba), cation disorder in, **160**, 174

Ferroelectric properties

Eu₂GeS₄, structural evidence, 158, 343

Pb₅Ta₁₀O₃₀, effect of cationic substitutions, 157, 261

Ferroelectrics

lead-free relaxors, solid state chemistry, 162, 260

PZT pyrochlore epitaxial films, support-promoted stabilization, **158**, 40 quantum, $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20

Ferromagnetic coupling

polynuclear self-assembled Cu(II) cluster complexes, 159, 308

Ferromagnetic interaction

between paramagnetic metal ion and coordinated ligand in metal complexes with imino nitroxyl diradical, **159**, 455

Ferromagnetic ordering

CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34

short-range, $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215

Ferromagnetic transition

 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117

Ferromagnetism

 $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, 159, 302

 $LaMn_{1-x}Li_xO_3$ perovskites, **159**, 68

Films

epitaxial, see Epitaxial films

 $LiCoO_2$, direct fabrication on substrates in flowing aqueous solutions at $150^{\circ}C$, 162, 364

Floating zone crystal growth

 $ScB_{19+x}Si_{v}$, **160**, 394

Fluorination

Bi-2201 phases, suppression of modulations, 156, 445

Nd₂CuO₄, HREM study, 157, 56

Fluorine

AlF₃-KF-CsF, ternary phase diagram and compositions for Nocolok flux. 161, 80

 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, **156**, 445 Ca_2NF , preparation and single-crystal structure analysis, **160**, 134

(C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87

(C₂H₁₀N₂)Zr₂F₁₀⋅ H₂O and (C₄H₁₂N₂)ZrF₆⋅ H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198

 $[Cp_2Mo(dmit)][BF_4^-]$, association into dimers, 159, 413

 $\begin{array}{l} \big[\text{Cu}_{12} L n_6 (\mu_3\text{-OH})_{24} (\text{C}_5 \text{H}_5 \text{NCH}_2 \text{CO}_2)_{12} (\text{H}_2 \text{O})_{18} (\mu_9\text{-NO}_3) \big] (\text{PF}_6)_{10} \\ (\text{NO}_3)_7 \cdot 12 \text{H}_2 \text{O} \ (L n^{\text{III}} = \text{Sm}^{\text{III}}, \text{Gd}^{\text{III}}), \text{ synthesis and characterization,} \\ \textbf{161} \ \ 214 \end{array}$

F⁻, chemical treatment of silica xerogels catalyzed by, **162**, 371

 $M^{\rm II}M^{\rm IV}$ F₆ ($M^{\rm II}$ = Ni,Pd,Cu; $M^{\rm IV}$ = Pd,Pt,Sn), preparation, magnetic properties, and pressure-induced transitions, **162**, 333

fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, **161**, 259

HF, impact on tin probe ions located on ${\rm Cr_2O_3}$ microcrystal surface, Mössbauer study, 162, 293

(H₂O)[V₂^{III}F₆] and Pyr-VF₃ of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266

MgF₂, decomposition in transmission electron microscope, 157, 30

MnF₅ chains, and CrX_2 (X = O,S) layers, compounds consisting of, spin exchange parameters, **156**, 464

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225

NaCa₂GeO₄F, synthesis and structure, **160**, 33

NaHPO₃F · 2.5H₂O, synthesis and crystal structure, 156, 415

Na₂MgInF₇, crystal structure, **159**, 234

Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327

Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415

NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8

Nb₆Br₈F₇, synthesis and crystal structure, **158**, 327

[Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243

 $(NH_4)[Ce^{IV}F_2(PO_4)]$, hydrothermal synthesis and characterization, 157, 180

 $NH_4Ln_3F_{10}$ (Ln = Dy, Ho, Y, Er, Tm), hydrothermal syntheses and crystal structure, **158**, 358

(NH₄)₇U₆F₃₁, hydrothermal synthesis, structure, and magnetic properties, **158**, 87

Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68

LnOF-LnF₃ systems (Ln = Nd,Sm,Eu,Gd), anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134

 $M_{10}(PO_4)_6F_2$ (M = Ca,Pb,Ba), electrical properties, 156, 57

 $\begin{array}{ccc} Ti_4(HPO_4)_2(PO_4)_4F_2\cdot C_4N_2H_{12}\cdot H_2O & and & Ti_4(HPO_4)_2(PO_4)_4F_2\cdot \\ & C_2N_2H_{10}\cdot H_2O, \ hydrothermal \ synthesis \ and \ structure, \ \textbf{162, } 96 \\ Fluorite & \\ \end{array}$

anion-excess, related phases in $LnOF-LnF_3$ systems (Ln = Nd,Sm,Eu, Gd), characterization and defect structure, **157**, 134

strain-driven pyrochlore to defect fluorite phase transition in rare earth sesquioxide-stabilized cubic zirconias, **159**, 121

structure AO_2 , pyrochlore $A_2B_2O_7$ transformation to, Raman spectroscopy and defect chemistry modeling, **160**, 25

Fluoroapatite

and hydroxyapatite materials, electrical properties, comparison, **156**, 57 Fluorocyclohexane/thiourea inclusion compounds

temperature-dependent structural properties and crystal twinning, 156, 16

Free energy minimization

simulation of thermal expansion in La-based perovskites, **156**, 394 Fullerenes

hydrothermal behavior: transformation to amorphous carbon and carbon nanotube formation, **160**, 184

superconductors, anionic charge order model, 158, 139

Full-potential linearized augmented plane waves

band structure calculations for analysis of low coordination of Ag⁺ and Cu⁺ in chalcogenide environments, **160**, 212

G

Gadolinium

 $CsGd_2Ag_3Se_5$, synthesis, structure, and physical properties, **158**, 299 $Cs_3Gd_4Cu_5Te_{10}$, synthesis and structure, **160**, 409

 $[Cu_{12}Gd_6(\mu_3-OH)_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9-NO_3)](PF_6)_{10}$ (NO₃)₇·12H₂O, synthesis and characterization, **161**, 214

GdAgMg, synthesis and crystal structures, 161, 67

GdCa₉(VO₄)₇, synthesis and structure, 157, 255

GdCrO₃ perovskite, magnetic properties, 159, 204

Gd₃Cu₂Te₇, synthesis and structure, 159, 186

GdOF-GdF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134

Gd₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77

 $Gd_2Si_2O_7$, type K structure at high pressure, 161, 166

Gd₄TiSe₄O₄, crystal structure and magnetic properties, 162, 182

K₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

 $KGdTiO_4$, Ruddlesden-Popper phases synthesized by ion exchange of $HLnTiO_4$, 161, 225

Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129

Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299

Rb₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

 ZrO_2 - Gd_2O_3 - TiO_2 , phase relations at 1500°C, **160**, 302 Gallium

CaAlGaO₄ and Ca₂AlGaO₅, crystal structures, **157**, 62

Ca₂MnGaO_{5+δ}, synthesis and crystal structure, 158, 100

CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34

CdGa₂Se₄, pressure-induced phase transitions, 160, 205

β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, formation by laser impact, 157, 94

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59

 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}],$ syntheses and structures, **156**, 480

Sr₃Ga₂O₆, crystal structure, **160**, 421

Sr₁₀Ga₆O₁₉, crystal structure, 160, 421

 $Sr_2MnGaO_{5+\delta}$, synthesis, crystal structure, and magnetic properties, 160, 353

 $\rm U_3Ga_2\mathit{M'}_3$ ($\mathit{M'}=\rm Si, Ge$), magnetotransport and heat capacity, 158, 227 Genetic algorithm

structural analysis of 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, **161**, 121

Germanium

BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101

Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343

A₅Ge₃ (A = Ca,Sr,Ba,Eu) compounds with Cr₅B₃-like structures, hydrogen impurity effects in, 159, 149

germanium pyrophosphates, syntheses, structures, and thermal expansion, **156**, 213

NaCa₂GeO₄F, synthesis and structure, 160, 33

neptunium-germanium binary system, structural chemistry, **156**, 313 $U_3M_2Ge_3$ (M = Al,Ga), magnetotransport and heat capacity, **158**, 227

Giant magnetoresistance

 $LaMn_{1-x}Li_xO_3$ perovskites, 159, 68

Glaserite

related structure of Na₃Fe(PO₄)₂, 160, 377

Glass

sol-gel SiO₂ glass doped with Ni²⁺ and Mn²⁺, defects and photoluminescence, **160**, 272

Goethite

structural change in methane oxidation, in situ XRD and IR study, 156, 225

Gold

(Fe@Au) nanoparticles, synthesis, characterization, and magnetic fieldinduced self-assembly, 159, 26

Graphite

 $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364

Н

Hafniun

BaHfO₃ perovskite, Pr^{4+} ions doped in, EPR study, **156**, 203 β -HfNCl, high-pressure synthesis and crystal structure, **159**, 80

 $HfT'_2Zn_{20}~(T'=Mn,Fe,Ru,Co,Rh,Ni)$ with $CeCr_2Al_{20}\text{-type}$ structure, $\textbf{161},\,288$

SrHfO₃, hyperfine interaction at, temperature dependence, **159**, 1 Hall constant

 $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474

Heat capacity

TiO₂ nanocrystalline ultrafine powder at low temperature, **156**, 220

 $U_3M_2M'_3$ (M = Al,Ga; M' = Si,Ge), 158, 227

Heat of mixing

lead zirconate titanate solid solution, 161, 402

Heat of phase transition

VO₂ nanopowders, **156**, 274

Heisenberg antiferromagnetic chains

 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101

Hexacyanoferrate

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, 161, 249

High-resolution electron microscopy

 $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$ polysomatic series, 162, 322

fluorinated Nd₂CuO₄, 157, 56

K₂In₁₂Se₁₉, **161**, 385

Na_{1.1}Ca_{1.8}Mn₉O₁₈, **162**, 34

order-disorder transition in (Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, **161**, 348

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135

 WO_{3-x} phases leading to WS_2 formation, **162**, 300

High spin molecules

pentanuclear cyanide-bridged complexes with ground states S = 6 and S = 9, characterization and magnetic properties, **159**, 302

Hi-Nicalon fibers

multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358

Holmium

HoAgMg, synthesis and crystal structures, 161, 67

HoB₂₂C₂N, synthesis and crystal structure, 159, 174

HoCa₉(VO₄)₇, synthesis and structure, **157**, 255

 $Ho(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350

 $AHoO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

Ho₃Ru₂C₅, preparation, properties, and crystal structure, **160**, 77

 $\mathrm{NH_4Ho_3F_{10}}$, hydrothermal syntheses and crystal structure, **158**, 358 Hopping energy

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215

Host-guest interactions

[Hg₆P₄](TiCl₆)Cl, 160, 88

Hydrogen

Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278

 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

CdBa₃(HPO₄)₂(H₂PO₄)₂, synthesis, crystal structure, and vibrational spectra, **161**, 97

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385

 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233

 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209

C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307

 $C_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, crystal structure, thermal analysis, and vibrational spectra, **156**, 364

 $(C_5H_{14}N_2)_2U_2F_{12}\cdot 5H_2O,$ hydrothermal synthesis, structure, and magnetic properties, 158, 87

(C₂H₁₀N₂)Zr₂F₁₀·H₂O and (C₄H₁₂N₂)ZrF₆·H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198

 M_4 Cl₈(THF)₆ (M = Mn, Fe, Co), compounds based on, structural and magnetic study, **159**, 281

 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, synthesis, crystal structure, and NMR, **162**, 168

[C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, **157**, 110

Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379

Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166

Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371

CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336

Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343

 $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure, **159**, 239

Co₂(OH₂)O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343 Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413

[Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

[Cr₃O(O₂CCMe₃)₆][O₂CCMe₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, **156**, 242

 $CsH_5(AsO_4)_2$, crystal structure and characterization: comparison with $CsH_5(PO_4)_2$ and $RbH_5(AsO_4)_2$, **161**, 9

Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166

 $Cu_xM_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, **157**, 23

 $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$

[Cu₁₂ $Ln_6(\mu_3$ -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀ (NO₃)₇·12H₂O (Ln^{III} = Sm^{III},Gd^{III}), synthesis and characterization, **161.** 214

Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, 160, 278

[M(dicyanamide)₂pyrazine] (M = Mn,Fe,Co,Ni,Zn), synthesis, structural isomerism, and magnetism, **159**, 352

N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312

fused silica reduction in, kinetics, flow and diffusion analysis, 160, 247

HF, impact on tin probe ions located on Cr₂O₃ microcrystal surface, Mössbauer study, 162, 293

H_xMoO₃ bronze, leaching treatments, 159, 51

H₂O(NH₄)₂HPO₄-(NH₄)₂SO₄, polythermal diagram between 0 and 25°C, **156**, 264

hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87

impurity effects in A_5Tt_3 (A = Ca,Sr,Ba,Eu; Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, 159, 149

K₄[Cd₃(HPO₄)₄(H₂PO₄)₂], synthesis and layered structure, 162, 188 layered molecule-based magnets formed by decamethylmetallocenium cations, 159, 391

Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29

[Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403

 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362

[Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328

 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32

[Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321

 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O$, revised space groups, **159**, 7

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162,

NaHPO₃F·2.5H₂O, synthesis and crystal structure, 156, 415

 $(NC_5H_{12})_2 \cdot Zn_3(HPO_3)_4$, low-density framework built up from fully connected (3,4) net of ZnO_4 tetrahedra and HPO_3 pseudo pyramids, 160, 4

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59

(NH₄)₄H₂(SeO₄)₃, crystal structure below 180 K, 160, 189

 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, **162**, 254

NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347

```
Ni(C<sub>8</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> interpenetration networks, hydrothermal syn-
                                                                                                 (NH_4)_4[Zn_4Ga_4P_8O_{32}] and (NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}], 156, 480
        thesis and crystal structure, 157, 166
                                                                                                 Ni(C<sub>8</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> interpenetration networks, 157, 166
  Ni(HP2O7)F·C2N2H10 with chain structure, solvothermal synthesis
                                                                                                 open-framework cadmium oxalates with channels stabilized by alkali
        and crystal structure, 158, 68
                                                                                                      metal ions, 162, 150
  polyarylmethyl polyradicals as organic spin clusters, 159, 460
                                                                                                 PbSnS<sub>3</sub> nanorods via iodine transport, 160, 50
  polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes,
                                                                                                 rhodamine B in lactone form, 156, 325
        synthesis, structure, and magnetism, 159, 308
                                                                                                 Th_2(PO_4)_2HPO_4 \cdot H_2O, Th(OH)PO_4, and Th_2O(PO_4)_2, 159, 139
  Sb<sub>2</sub>O(CH<sub>3</sub>PO<sub>3</sub>)<sub>2</sub>, synthesis and layered structure, 162, 347
                                                                                                 Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O and Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot
  α-Sn(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O, solid-state synthetic reaction and characterization,
                                                                                                      C_2N_2H_{10} \cdot H_2O, 162, 96
                                                                                                 A_2[(UO_2)_3(IO_3)_4O_2] (A = K,Rb,Tl) and AE[(UO_2)_2(IO_3)_2O_2](H_2O)
  Sr(HC<sub>2</sub>O<sub>4</sub>)·1/2(C<sub>2</sub>O<sub>4</sub>)·H<sub>2</sub>O, structure determination from powder
                                                                                                      (AE = Sr, Ba, Pb), effects of cations, 161, 416
        X-ray and neutron diffraction studies, 157, 283
                                                                                                 VO<sub>2</sub>·H<sub>2</sub>O needle-like nanocrystals, 157, 250
  Th<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>·H<sub>2</sub>O, hydrothermal synthesis and characterization,
                                                                                              Hydroxide
        159, 139
                                                                                                 AlO(OH)· αH<sub>2</sub>O, monoclinic nanocrystals formed by activated surface
  Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O
                                                    and Ti_4(HPO_4)_2(PO_4)_4F_2.
                                                                                                      hydrolysis of Al metal, XRD and IR studies, 157, 40
        C<sub>2</sub>N<sub>2</sub>H<sub>10</sub>·H<sub>2</sub>O, hydrothermal synthesis and structure, 162, 96
                                                                                                 amino acid intercalation into layered double hydroxide by coprecipita-
  tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane,
                                                                                                      tion, 162, 52
        ground spin states, 159, 428
                                                                                                 BaAl<sub>2</sub>O<sub>3</sub>(OH)<sub>2</sub>·H<sub>2</sub>O with six-membered rings, synthesis and character-
  1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room
                                                                                                      ization, 161, 243
        temperature, comparison with spin crossover transitions, 159, 451
                                                                                                 [(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], \ synthesis \ and
Hydrogen bonds
                                                                                                      structure, 159, 209
                                                                                                 Co(NH<sub>3</sub>)<sub>6</sub>(V<sub>1.5</sub>P<sub>0.5</sub>)O<sub>6</sub>OH, hydrothermal synthesis and crystal struc-
  Cd(CN)_2 \cdot 2/3H_2O \cdot t-BuOH, 156, 51
  C_{10}H_{28}N_4P_4O_{12} \cdot 4H_2O, 156, 364
                                                                                                      ture, 159, 239
  CsH<sub>5</sub>(AsO<sub>4</sub>)<sub>2</sub>, 161, 9
                                                                                                 Co<sub>2</sub>(OH<sub>2</sub>)O<sub>2</sub>CC<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>, synthesis, crystal structure, and magnetic
  2,2-dinitropropane-1,3-diol, temperature dependence, 157, 296
                                                                                                      properties, 159, 343
  NaHPO<sub>3</sub>F · 2.5H<sub>2</sub>O and Na<sub>2</sub>PO<sub>3</sub>F · 10H<sub>2</sub>O, 156, 415
                                                                                                 [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10}
                                                                                                      (NO_3)_7 \cdot 12H_2O(Ln^{III} = Sm^{III},Gd^{III}), synthesis and characterization,
  α-nitronyl nitroxide radicals, 159, 440
Hydrogen fluoride
                                                                                                       161, 214
  impact on tin probe ions located on Cr<sub>2</sub>O<sub>3</sub> microcrystal surface, Möss-
                                                                                                 goethite, structural change in methane oxidation, in situ XRD and IR
        bauer study, 162, 293
                                                                                                      study, 156, 225
                                                                                                 Mg:Al layered double hydroxide and hexacyanoferrate, physical and
Hydrolysis
  Al metal surface into AlO(OH) · αH<sub>2</sub>O nanocrystals in monoclinic struc-
                                                                                                      chemical interactions between, 161, 249
        ture, 157, 40
                                                                                                 [Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, revised space
  forced cohydrolysis at 100°C: direct synthesis of fluorite-type ceria-
                                                                                                      groups, 159, 7
        zirconia solid solution nanoparticles at low temperature, 158,
                                                                                                 Na<sub>2</sub>In<sub>2</sub>[PO<sub>3</sub>(OH)]<sub>4</sub>·H<sub>2</sub>O, hydrothermal synthesis and crystal struc-
        112
                                                                                                      ture, 157, 213
                                                                                                 [NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2] (x = 1.65), syn-
Hydrothermal synthesis
  amorphous carbon and carbon nanotubes from C<sub>60</sub>, 160, 184
                                                                                                      thesis and characterization, 159, 59
  BaAl<sub>2</sub>O<sub>3</sub>(OH)<sub>2</sub>·H<sub>2</sub>O with six-membered rings, 161, 243
                                                                                                 Pb<sub>3</sub>O<sub>2</sub>(OH)(NO<sub>3</sub>), crystal structure, 158, 78
  Cd(VO_2)_4(SeO_3)_3 \cdot H_2O, 161, 23
                                                                                                 Pb<sub>13</sub>O<sub>8</sub>(OH)<sub>6</sub>(NO<sub>3</sub>)<sub>4</sub>, crystal structure, 158, 74
  (C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O, 158, 87
                                                                                                 M_{10}(PO_4)_6(OH)_2 (M = Ca,Pb,Ba), electrical properties, 156, 57
  (C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O and (C_4H_{12}N_2)ZrF_6 \cdot H_2O, 159, 198
                                                                                                 Rb<sub>1.12</sub>(NH<sub>4</sub>)<sub>0.88</sub>SO<sub>4</sub>·Te(OH)<sub>6</sub>, thermal analysis and crystal structure at
  [C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes,
                                                                                                      435 K, 161, 1
                                                                                                 Th(OH)PO<sub>4</sub>, hydrothermal synthesis and characterization, 159, 139
        157, 110
  Co(C<sub>8</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>2</sub> interpenetration networks, 157, 166
                                                                                              Hydroxyapatite
  Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH, 159, 239
                                                                                                 carbonated, deficient in calcium, crystal structure and thermal decompo-
  Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242
                                                                                                      sition, 160, 340
  [{Cu(2,2'-bpy)_2}_2Mo_8O_{26}], 161, 173
                                                                                                 and fluoroapatite materials, electrical properties, comparison, 156,
  Cu(C<sub>8</sub>H<sub>6</sub>NO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> interpenetration networks, 157, 166
                                                                                                      57
  Cu(II) coordination networks with chessboard tunnels, 158, 315
                                                                                                 thermal decomposition during plasma-spray procedure, 160, 460
  \lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil \lceil \{Cu_2Br_4\} \rceil and \lceil Cu(H_2NCH_2CH_2NH_2)_2 \rceil
                                                                                              Hyperfine interaction
        [\{Cu_5Br_7\}], 158, 55
                                                                                                 at <sup>181</sup>Ta in SrHfO<sub>3</sub>, temperature dependence, 159, 1
  CuInS<sub>2</sub> nanorods, 161, 179
                                                                                              Hypervalent bonding
  (Hg_3)_2(HgO_2)(PO_4)_2 and (Hg_3)_3(PO_4)_4, 157, 68
                                                                                                 short Pb-Pb bonds in Ti<sub>6</sub>Pb<sub>4.8</sub>, 159, 134
  (H_2O)[V_2^{III}F_6] and Pyr-VF<sub>3</sub> of pyrochlore type, 162, 266
  K_4[Cd_3(HPO_4)_4(H_2PO_4)_2] with layered structure, 162, 188
  K_2TiSi_6O_{15} with corrugated [Si_6O_{15}]_{\infty\infty} layers, 156, 135
  Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32
                                                                                              Imino nitroxyl diradical
  MoS<sub>2</sub>, 159, 170
                                                                                                 metal complexes with, magnetic properties, 159, 455
  Na_2In_2[PO_3(OH)]_4 \cdot H_2O, 157, 213
                                                                                              Impedance
  NaYFPO<sub>4</sub>, 157, 8
                                                                                                 ac, A'[A_2B_3O_{10}] (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-
                                                                                                      type layered perovskites, 158, 279
  (NH_4)[Ce^{IV}F_2(PO_4)], 157, 180
  NH_4Ln_3F_{10} (Ln = Dy,Ho,Y,Er,Tm), 158, 358
                                                                                                 complex, fluoroapatite and hydroxyapatite materials, comparison,
  (NH_4)_7U_6F_{31}, 158, 87
                                                                                                      156, 57
```

Impedance spectroscopy

chemical degradation of thermally treated ferrite-superconductor multiphase materials, **160**, 332

Inclusion compounds

fluorocyclohexane/thiourea, temperature-dependent structural properties and crystal twinning, **156**, 16

Incommensurate modulation

 $Bi_{1-x}Cr_xO_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15) high-temperature phase, **156**, 168 $Ni_{6\pm x}Se_5$, **162**, 122

ZrP₂O₇ cubic phase, 157, 186

Indiun

 $Bi_{2-x}In_xSe_3$ single crystals, transport properties, **160**, 474

Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CeIrIn₅ and CeRhIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25

CuInS₂ nanorods, hydrothermal synthesis and characterization, **161**, 179 β-Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients, formation by laser impact, **157**, 94

In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13

In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition, structures and textures, TEM study, 158, 119

K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385

KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334

Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213

Na₂MgInF₇, crystal structure, 159, 234

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233

 $SrIn_2O_4$ red-emitting phosphors activated by praseodymium, luminescent properties, **156**, 84

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177

Infrared spectroscopy

activated surface hydrolysis of Al metal into AlO(OH) \cdot α H₂O nanocrystals in monoclinic structure, 157, 40

CdBa₃(HPO₄)₂(H₂PO₄)₂, **161**, 97

 $Ce_{1-x}Bi_xVO_4$ and $Ce_{1-x}M_xVO_{4-0.5x}$ (M=Pb,Sr,Ca) solid solutions, 158, 254

 $C_{10}H_{28}N_4P_4O_{12} \cdot 4H_2O$, 156, 364

Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371

 α -Co₂SiO₄- α -Ni₂SiO₄, **157**, 102

CsBSe₃, 157, 206

CsH₅(AsO₄)₂, 161, 9

N,N'-dimethylpiperazinium(2+) hydrogen selenite, **161**, 312

goethite structural change in methane oxidation, in situ study, 156, 225 KIn(WO₄)₂, 158, 334

LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, **160**, 368 Li₂Zn(HPO₄)₂ · 0.66H₂O, **162**, 29

local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 mono-L-valinium nitrate, **158**, 1

Na₃Fe(PO₄)₂: glaserite-like structure, 160, 377

 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241

physical and chemical interactions between Mg.Al layered double hydroxide and hexacyanoferrate, **161**, 249

RbBSe₃, 157, 206

 $SrFe_{2}(PO_{4})_{2}$ and $Sr_{9}Fe_{1.5}(PO_{4})_{7}$, 162, 113

 $Th_2(PO_4)_2HPO_4 \cdot H_2O$, $Th(OH)PO_4$, and $Th_2O(PO_4)_2$, **159**, 139

TlBSe₃, 157, 206

VO₂ nanopowders, 156, 274

V₂O₅ nanocrystals, 159, 181

Interatomic potential

for structure simulation of alkaline earth cuprates, 158, 162

in thermal expansion simulation in La-based perovskites, **156**, 394 Interfacial free energy

at liquid-solid boundary, derivation from nucleation rates, **159**, 10 Intergrowth phases

 $n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO}$ (n = 2-5; m = 1), single-crystal X-ray diffraction studies 156, 75

CeIrIn₅ and CeRhIn₅ heavy fermion materials, structure, **158**, 25

La₂₄Li₂₀Ti₅O₅₆, pseudo-close-packed columnar intergrowth structure, **162.** 379

 A_x Mo_yW_{1-y}O₃ (A = K,Ce), intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341

Intermetallics

REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, **161**, 67

TiAl, reaction with nitrogen plasma, 157, 339

Internal chemical pressure effect

 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117

Interpenetration networks

Co(II), Cu(II), and Ni(II) with bis(trans-4-pyridylacrylate), hydrothermal syntheses and crystal structures, 157, 166

Iodine

catalysis of MgPd₂ formation, kinetics, 159, 113

 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88

monoalkyl aluminum(III) compounds, reduction, Na/K alloy for, 162, 225

NaLa₆(Os)I₁₂, synthesis and structure, **161**, 161

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233

 $A_2[(UO_2)_3(IO_3)_4O_2]$ (A = K,Rb,Tl) and $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr,Ba,Pb), formation, effects of cations, **161**, 416

Iodine transport

in hydrothermal preparation of PbSnS₃ nanorods, **160**, 50 Ion exchange

Li₂NaV₂(PO₄)₃ 3.7-V lithium-insertion cathode with rhombohedral NASICON structure prepared by, **162**, 176

 $MnO_2 \cdot 0.22H_2O$ and $MnO_2 \cdot 0.70H_2O$ synthesis from monoclinic-type LiMnO₂, **160**, 69

noncluster vanadium(IV) coordination polymers, 160, 118

synthesis of KLnTiO₄ (Ln = La,Nd,Sm,Eu,Gd,Dy) Ruddlesden-Popper phases by ion exchange of HLnTiO₄, **161**, 225

Ionic conductivity

fluoroapatite and hydroxyapatite materials, comparison, 156, 57

LiVO₃, neutron powder diffraction study from 340 to 890 K, **156**, 379

in Nasicon structures, modeling, 156, 154

phosphorus oxynitride compounds, **161**, 73 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2–0.8), **156**, 437

 $SI_{0.97}II_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), 150, 43

Iridiun

Ba₇Ir₆O₁₉, structural relationship to Sr₇Re₄O₁₉, **160**, 45

 $CeIrIn_5$ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25

IrTe₂, preparation under high pressure, theoretical study, **162**, 63

[(Me₃Sn)₃Ir(CN)₆], metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324

 $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$, crystal structure, **157**, 324

Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, Mössbauer spectrum, and magnetic behavior, **159**, 46

BaFe[(CN)₅NO] · $3H_2O$, oxidative thermal decomposition, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17

 κ -(BETS)₂Fe X_4 (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, (BEDT-TTF)₄[Fe(NCS)₆]·CH₂Cl₂, **159.** 385

[(S)- $C_5H_{14}N_2$][Fe₄(C_2O_4)₃(HPO₄)₂] and [(S)- $C_5H_{14}N_2$][Fe₄(C_2O_4)₃ (HPO₄)₂(H₂O)₂], synthesis and characterization, **157**, 233

 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209

CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336

 $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$ crystallographic shear structure compounds, stability, **161**, 45

 $Cu_{3+1.5x}Fe_{4-x}(VO_4)_6$, phase formation and crystal structures, **156**, 339 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327

(Fe@Au) nanoparticles, synthesis, characterization, and magnetic fieldinduced self-assembly, 159, 26

Fe₄Cl₈(THF)₆, compounds based on, structural and magnetic study, 159, 281

[Fe(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352

 Fe_2O_3 nanoparticles, pillaring of $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with, 160, 435

α-Fe₂O₃, structure and magnetic properties, effects of Zn doping, **156**,

Fe₂O₃-Cr₂O₃-TiO₂, phase relations between 1000 and 1300°C, **161**, 45 ferrite-superconductor multiphase materials, thermally treated, chemical degradation, **160**, 332

[Fe^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391

FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79

 $T\text{Fe}_2\text{Zn}_{20}$ (T = Zr,Hf,Nb) with $\text{CeCr}_2\text{Al}_{20}$ -type structure, **161**, 288 goethite, structural change in methane oxidation, *in situ* XRD and IR study, **156**, 225

In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13

 $K_{0.2}Co_{1.4}[Fe(CN)_6]\cdot 7H_2O,$ microstructural changes induced by thermal treatment, 156, 400

ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250

(La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215

 $LiCo_{1-x}Fe_xO_2$ system, lithium-ion conductors of, preparation and structure, **156**, 470

Li-Fe-Mn-O spinel solid solutions, preparation and characterization, 161. 152

Li–Fe–tartrate gels (molar ratio Li/Fe \leq 1/5), thermal behavior, **160**, 100 Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305 Li_xNi_{0.70}Fe_{0.15}Co_{0.15}O₂ system, X-ray diffraction and Mössbauer study, **159**, 103

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249

Mg-Fe-O and Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and *in situ* Mössbauer spectroscopy, **161**, 38

Na₃Fe(PO₄)₂, glaserite-like structure, 160, 377

 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307

SrFeO_v, electrical properties at high temperature, 158, 320

Sr₂Fe₂O₅, crystal and magnetic structures at elevated temperatures, **156**, 292

 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, synthesis and characterization, 162,

 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437

 $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3,$ structure and physical properties, effects of metal-metal sigma bonding, $\bf 162,\ 103$

TIFeO₃, structural distortion and chemical bonding, comparison with $AFeO_3$ (A = rare earth), 161, 197

Isomerism

 $[M(dicyanamide)_2 pyrazine] (M = Mn, Fe, Co, Ni, Zn), 159, 352$

J

Jahn-Teller distortion

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, pressure dependence, **160**, 307

Ni³⁺-O octahedron in Li(Mn,Ni)₂O₄ 5V cathode materials for lithiumion secondary batteries, **156**, 286

role in resistivity increase by thermal cycling under magnetic field in $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$, **160**, 1

Jahn-Teller effect

 $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333

Κ

Kinetics

chemical degradation of thermally treated ferrite-superconductor multiphase materials, 160, 332

fused silica reduction in hydrogen, flow and diffusion analysis, **160**, 247 iodine-catalyzed MgPd₂ formation, **159**, 113

phase changes in clusters, molecular dynamics studies, 159, 10

L

Lanthanum

 $BaLa_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, 159, 163

Bi_{4.86}Li_{1.14}O₉ monoclinic structure, *ab initio* determination from powder neutron diffraction data, **162**, 10

 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, 156, 445

CsLa₂CuSe₄, synthesis, structure, and physical properties, 158, 299

K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites, pillaring with Fe₂O₃ nanoparticles, **160**, 435

KLaTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225

 La^{3+} , substitution in $Pb_5Ta_{10}O_{30}$, effect on ferroelectric properties, 157, 261

LaAgMg, synthesis and crystal structures, 161, 67

 LaM_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, **160**, 307

La-Ca-Mn-O system, phase equilibrium, 156, 237

 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, **157**, 309

LaCa₉(VO₄)₇, synthesis and structure, 157, 255

 $La(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350

LaCoO₃, spin state transition depending on temperature or Sr doping, XAS study, 158, 208

 $La_8Cu_7O_{19}$ five-leg spin ladder compound, crystal growth, structure, and transport properties, **156**, 422

ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250

La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, 162, 379

 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, **159**, 68 $LaMnO_{3+\delta}$, granular, charge-carrier localization on Mn surface sites in, **160**, 123

La₂Mo₄O₁₅, crystal structure, ab initio determination from X-ray and neutron powder diffraction, 159, 228

 $La_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90

LaOX (X = Cl,Br), and solid state solutions of, mechanochemical synthesis, **160**, 469

LaBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173

La₂O₂CO₃ II, crystal structure, 158, 14

La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84

LaSbS₂Br₂, crystal and electronic structures and optical properties, 158, 218

La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117

 $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, oxidation states of Cu and Ru in, determination by XANES measurements, **156**, 194

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, electronic and magnetic properties due to Co ions, **159**, 215

 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143

 $\text{La}_4\text{Ti}_2\text{O}_4\text{Se}_5$ and $\text{La}_6\text{Ti}_3\text{O}_5\text{Se}_9$, syntheses and crystal structures, 157, 289

MLa₂Ti₂TaO₁₀ (M = Cs,Rb) layered perovskites, structure, **158**, 290 α-La₂W₂O₉, *ab initio* structure determination from X-ray and neutron powder diffraction, **159**, 223

NaLa₆(Os)I₁₂, synthesis and structure, **161**, 161

 $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) layered perovskites, structure, **158**, 290

perovskites based on, thermal expansion in, computer simulations,

 $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19

Lasers

induction of formation of conducting β -Ga₂O₃-In₂O₃ solid solutions with composition gradients, **157**, 94

Laser-solid-liquid ablation

synthesis of Ag₂Se nanoparticles, 160, 430

Layered double hydroxide

amino acid intercalation by coprecipitation, 162, 52

intercalation of platinum complex in, 161, 332

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249

Lead

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184

Ce_{1-x}Pb_xVO_{4-0.5x} solid solutions, Raman and IR spectroscopy, **158**, 254 Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135

 β -PbO, and other lead(II) oxides, correlation and relativistic effects: quantum *ab initio* explanation of ²⁰⁷Pb NMR and XANES spectra, **157**, 220

Pb₃O₂(OH)(NO₃), crystal structure, 158, 78

Pb₁₃O₈(OH)₆(NO₃)₄, crystal structure, 158, 74

 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb,Ta) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207

 $Pb_{10}(PO_4)_6X_2$ (X = F,OH), electrical properties, 156, 57

PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50

 $Pb_5Ta_{10}O_{30}$, ferroelectric properties, effect of cationic substitutions, 157, 261

Pb[(UO₂)₂(IO₃)₂O₂](H₂O), formation, effect of cation, **161**, 416 PbVOP₂O₇ with intersecting tunnel structure, **162**, 354

PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, 161, 402

PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40

Ti₆Pb_{4.8}, short Pb-Pb bonds in, **159**, 134

 $(Tl,Pb)A_2QCu_2O_{6+z}$ (A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, **162**, 1

Lead-free relaxor ferroelectrics

solid state chemistry, 162, 260

Ligand field

control of magnetic anisotropy in molecular materials, **159**, 253 Lithium

Al-Li-Si system

Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria, 156, 500

polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506

effects on amorphous to crystalline phase transition of silica, **161**, 373 electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388

intercalation in cation-deficient spinels with formula close to ${\rm Li_2Mn_4O_9},$ 160, 108

La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, 162, 379

 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, 159, 68

Li-M-X systems (M = V,Nb,Ta; X = P,As), synthesis and crystal structure, **156**, 37

LiAlB₂O₅, ab initio structure determination, 156, 181

LiCo_{1-x}Fe_xO₂ system, lithium-ion conductors of, preparation and structure, **156**, 470

LiCoO₂ films, direct fabrication on substrates in flowing aqueous solutions at 150°C, 162, 364

Li₃CuSbO₅, crystal structure, **156**, 321

Li-Fe-Mn-O spinel solid solutions, preparation and characterization, 161, 152

Li–Fe–tartrate gels (molar ratio Li/Fe \leq 1/5), thermal behavior, **160**, 100 Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305 LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, **148**, 316; comments, **156**, 251, 253

LiMnO₂, monoclinic-type, MnO₂·0.22H₂O and MnO₂·0.70H₂O synthesis from. **160.** 69

LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, NMR and FTIR studies, 160, 368

Li(Mn,M)₂O₄ (M = Cr,Co,Ni), 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286

Li₂Mn₄O₉, cation-deficient spinels with formula close to, topotactic reactions, structure, and Li intercalation, **160**, 108

Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, 158, 148

 $\rm Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3,$ structural and electrochemical study, 158, 169

Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176

 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, **159**, 103

 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z=0.075), single-crystal growth and structural chemistry, **160**, 178

 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, structure, neutron diffraction study, 158, 187

 $\text{Li}_2Ln_5\text{O}_4(\text{BO}_3)_3$ (Ln = Yb, Lu), discovery in $\text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3$ phase diagram and structural analysis of Yb phase, **156**, 161

γ-Li₃PO₄, ionic conductivity, theoretical study, **161**, 73

γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73

LiVO₃, structural disorder and ionic conductivity, neutron powder diffraction study from 340 to 890 K, **156**, 379

 $\text{Li}_{1+x}V_3O_8$, mechanochemical synthesis, reduction processes in, 160, 444

 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}$, synthesis and characterization, **162**, 29 Lone pair electrons

distortion of Pb₃O₂(OH)(NO₃) crystal structure, 158, 78

localization in Bi_{4.86}Li_{1.14}O₉ monoclinic structure, **162**, 10

Low-pressure chemical vapor deposition

continuous, in deposition of multilayered BN coatings onto Hi-Nicalon fibers, **162**, 358

Luminescence

BaZnCl₄-II:Sm²⁺, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237 SrIn₂O₄ red-emitting phosphors activated by praseodymium, **156**, 84 voltage-dependent, molecularly doped polymer system, **158**, 242 YNbO₄ and YNbO₄:Bi, **156**, 267

Lutetium

 $\text{Li}_2\text{Lu}_5\text{O}_4(\text{BO}_3)_3$, discovery in $\text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3$ phase diagram, 156, 161

 LuM_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93

LuB₂₂C₂N, synthesis and crystal structure, 159, 174

LuCa₉(VO₄)₇, synthesis and structure, 157, 255

 $ALuO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

Μ

Magnesium

REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, 161, 67

Mg-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52

Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249

[MgAl] layered double hydroxide, platinum complex intercalation into, 161, 332

Mg(CN)₂, synthesis and structural properties, 159, 244

 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\le x \le$ 0.166), synthesis and crystal structure, **160**, 251

MgF₂, decomposition in transmission electron microscope, **157**, 30

Mg-Fe-O and Mg-Fe-Al-O complex oxides, reduction of, analysis by TPR and *in situ* Mössbauer spectroscopy, **161**, 38

 $\label{eq:mgN(CN)2} Mg[N(CN)_2]_2, synthesis, vibrational spectroscopy, and crystal structure, \\ \textbf{157}, 241$

Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order-disorder transitions, neutron diffraction study, **156**, 487

MgO(001), cleaved surface, epitaxial growth of AgS_2 film on, 157, 86 $MgPd_2$, $MgPd_3$, and Mg_3Pd_5 , structure and thermal stability, and kinetics of iodine-catalyzed $MgPd_2$ formation, 159, 113

Na₂MgInF₇, crystal structure, 159, 234

Magnetic anisotropy

control in molecular materials, 159, 253

in magnetic exchange between orbitally degenerate metal ions, **159**, 268 Magnetic bistability

organic crystals at room temperature, comparison with spin crossover transitions, **159**, 451

Magnetic exchange

between orbitally degenerate metal ions, associated magnetic anisotropy, **159**, 268

Magnetic field

(Fe@Au) nanoparticle self-assembly induced by, 159, 26

 $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$ resistivity under, increase by thermal cycling, **160.** 1

Magnetic g-factors

Nd3+ in Nd2BaCuO5 and Nd2BaZnO5, 162, 42

Magnetic properties

Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, 159, 46

Ba₅Co₅ClO₁₃, 158, 175

 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101

 $BaKCu_3MS_4$ (M = Mn,Co,Ni), 157, 144

BaNd₂MnS₅, 159, 163

Ba₃NdRu₂O₉ 6H-perovskite, **161**, 113

 $BaLn_2MS_5$ (*Ln* = La,Ce,Pr,Nd; *M* = Co,Zn), **159**, 163

BaV₁₃O₁₈, **158**, 61

BiMn₆PO₁₂, **157**, 123

 $Ca_3Co_{1+x}Mn_{1-x}O_6$ quasi-one-dimensional oxides, **160**, 293

Ca₃CuMnO₆ quasi-one-dimensional oxides, **160**, 293

CdCr_{2-x}Ga_xSe₄ spinel system, **158**, 34

 $(C_5H_{14}N_2)_2U_2F_{12} \cdot 5H_2O$, **158**, 87

 $M_4\text{Cl}_8(\text{THF})_6$ -based compounds with M = Mn,Fe,Co, 159, 281

Co₃[BPO₇], 156, 281

Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371

 $CoFe(CN)_5NH_3 \cdot 6H_2O$, effects of dehydration and photo-irradiation, 159, 336

Co(H₂O)₂O₂CC₆H₄CO₂, **159**, 343

 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La, Nd, Dy, Ho, Yb), correlation with phonon mode behavior, **160**, 350

Co₂(OH₂)O₂CC₆H₄CO₂, 159, 343

 $Cp_2Mo(dmit)$ with Br^- or BF_4^- , 159, 413

 $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362

 Cs_2CoSiO_4 and Cs_5CoSiO_6 , **162**, 204

Cu(II) coordination networks with chessboard tunnels, 158, 315

$$\begin{split} & \big[\text{Cu}_{12} L n_6 (\mu_3 \text{-OH})_{24} (\text{C}_5 \text{H}_5 \text{NCH}_2 \text{CO}_2)_{12} (\text{H}_2 \text{O})_{18} (\mu_9 \text{-NO}_3) \big] (\text{PF}_6)_{10} \\ & (\text{NO}_3)_7 \cdot 12 \text{H}_2 \text{O} \ (\textit{Ln}^{\text{III}} = \text{Sm}^{\text{III}}, \text{Gd}^{\text{III}}), \ \textbf{161}, \ 214 \end{split}$$

[M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), 159, 352

EuPd₃S₄, 157, 117

 $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333

(Fe@Au) nanoparticles, 159, 26

α-Fe₂O₃, effect of Zn doping, 156, 408

GdCrO₃ perovskite, 159, 204

Gd₄TiSe₄O₄, 162, 182

[Hg₆P₄](TiCl₆)Cl, 160, 88

 $Hg_4VO(PO_4)_2$ containing Hg_2^{2+} dumbbells, 158, 94

 $(H_2O)[V_2^{III}F_6]$ and Pyr-VF₃ of pyrochlore type, **162**, 266

K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195

 $LaMn_{1-x}Li_xO_3$ perovskites, **159**, 68

LaMnO_{3+ δ}, **160**, 123

 $La_{1-x}Pr_{x}CrO_{3}$, **162**, 84

 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, due to Co ions, **159**, 215

layered molecule-based magnets formed by decamethylmetallocenium cations and $[M^{II}Ru^{III}(oxalate)_3]$ ($M^{II}=Mn,Fe,Co,Cu,Zn$), 159, 391

Li₂Mn₂(SO₄)₃, **158**, 148

metal complexes with imino nitroxyl diradical, 159, 455

 $[Mn^{II}(t-Bu)_4 salen]_2$, **159**, 403

 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, 159, 362

MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, **159**, 293

[Mn(L)]₃[Cr(CN)₆]₂·nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), **159**, 328

 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O, 156, 32$

 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb), **162**, 90

Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195

Na_xMnO_{2+δ} prepared by reduction of aqueous sodium permanganate by sodium iodide, **156**, 331

```
Ln_{1,33}Na_xMn_xTi_{2-x}O_6 (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55),
        161, 294
  (NH_4)_7U_6F_{31}, 158, 87
  A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), structural and electronic factors
        governing, 160, 239
  pentanuclear cyanide-bridged complexes with high spin ground states
        S = 6 and S = 9, 159, 302
  polyarylmethyl polyradicals, 159, 460
  polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes,
  Pr<sub>0.7-x\sqrt</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> perovskites, effect of Pr deficiency, 156, 68
  RbEr<sub>2</sub>Cu<sub>3</sub>S<sub>5</sub>, 158, 299
  Rb<sub>2</sub>Gd<sub>4</sub>Cu<sub>4</sub>S<sub>9</sub>, 158, 299
  R_3 Ru_2 C_5 (R = Y,Gd-Er), 160, 77
  Ln_3 RuO_7 (Ln = Sm_1 Eu), 158, 245
  Sr_2CoSbO_{6-\delta} and Sr_3CoSb_2O_9 perovskites, 157, 76
  Sr_3Fe_{2-x}Co_xO_{7-\delta} (0 \leq x \leq 0.8), 158, 307
  Sr_2MnGaO_{5+\delta}, 160, 353
  Sr<sub>7</sub>Re<sub>4</sub>O<sub>19</sub>, 160, 45
  Th<sub>3</sub>Co<sub>3</sub>Sb<sub>4</sub>, 162, 158
  LnTi_{0.5}V_{0.5}O_3 (Ln = Ce,Pr), 156, 452
  TlCr_5S_{8-y}Se_y (y = 1-7): spin-glass behavior mediated by nonmagnetic
        sublattice, 158, 198
  TIFeO<sub>3</sub>, comparison with AFeO_3 (A = rare earth), 161, 197
  1,3,5-trithia-2,4,6-triazapentalenyl crystals at room temperature, 159,
  V<sub>5</sub>S<sub>8</sub>, effects of metal-atom clustering, 160, 287
  YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355
Magnetic solids
  molecule-based, preface to special issue on, 159, 251
  with several unpaired electrons per spin site, antiferromagnetic spin
        exchange interactions, spin dimer analysis, 156, 464
Magnetic structure
  Ba<sub>3</sub>NdRu<sub>2</sub>O<sub>9</sub> 6H-perovskite, 161, 113
  marokite, 160, 167
  Pd<sub>3</sub>Mn and Pd<sub>3</sub>MnD<sub>0.7</sub>, high-pressure neutron diffraction studies,
        161, 93
  Sr<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> at elevated temperature, 156, 292
Magnetic susceptibility
  Ba<sub>3</sub>NdRu<sub>2</sub>O<sub>9</sub> 6H-perovskite, 161, 113
  \kappa-(BETS)<sub>2</sub>FeX<sub>4</sub> (X = Cl,Br) with superconducting transitions, effect of
        halogen substitution, 159, 407
  Ce<sub>2</sub>Ni<sub>22</sub>C<sub>2.75</sub>, 161, 63
  charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with
        thiocyanato-complex anions, 159, 385
  LnCrO_4 (Ln = Nd,Sm,Dy), 160, 362
  Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O, 156, 242
  ALaFeVO<sub>6</sub> (A = Ca,Sr) double-perovskite oxides, 162, 250
  marokite, 160, 167
  NaLa<sub>6</sub>(Os)I<sub>12</sub>, 161, 161
  Na_2M_3Sb_4 (M = Sr,Ba), 162, 327
  nonlinear, Co<sub>3</sub>BTCA<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>, resonance in, 159, 379
  ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, 173
  SrFe_2(PO_4)_2 and Sr_9Fe_{1.5}(PO_4)_7, 162, 113
  Sr_{9/8}TiS_3, Sr_{8/7}TiS_3, and Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, effects of metal-metal
        sigma bonding, 162, 103
  Ti<sub>11</sub>(Sb,Sn)<sub>8</sub>, 157, 225
Magnetization
  negative, GdCrO<sub>3</sub> perovskite, 159, 204
Magnetoresistivity
```

 $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, 159, 328 $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, 328[Mn(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, 159, 352 MnF_5 chains, and CrX_2 (X = O,S) layers, compounds consisting of, spin exchange parameters, 156, 464 Mn₆(H₂O)₂(HPO₄)₄(PO₄)₂·C₄N₂H₁₂·H₂O, synthesis and characterization, 156, 32 $U_3M_2M'_3$ (M = Al,Ga; M' = Si,Ge), 158, 227 α-MnO₂, open tunnel oxide precipitated by ozone oxidation, prepara-Manganese tion and characterization, 159, 94; erratum, 160, 292 Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, MnO₂·0.22H₂O and MnO₂·0.70H₂O, synthesis from monoclinic-type Mössbauer spectrum, and magnetic behavior, 159, 46 LiMnO₂, 160, 69

BaKCu₃MnS₄, electrical and magnetic properties, 157, 144 BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163 BiMn₆PO₁₂, preparation, structure, and magnetic properties, **157**, 123 Ca₃Co_{1+x}Mn_{1-x}O₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 Ca₃CuMnO₆ quasi-one-dimensional oxides, synthesis, crystal structure, and magnetic properties, 160, 293 Ca₂MnGaO_{5+δ}, synthesis and crystal structure, **158**, 100 CaMn₂O₄ marokite, antiferromagnetism, 160, 167 $Ca_{1-x}Y_xMnO_3$, structural phase diagram, 156, 458 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), phonon modes, **160**, 350 $Cu_xMn_{1-x}(HCOO)_2 \cdot 2H_2O$, crystal structure and thermal behavior, **157.** 23 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) perovskite, lattice distortion in, pressure dependence, 160, 307 La-Ca-Mn-O system, phase equilibrium, 156, 237 La_{2-x}Ca_{1+2x}Mn₂O₇, electron-doped layered orthorhombic phase in 0.8 < x < 1.0 composition range, TEM study, 157, 309 $LaMn_{1-x}Li_xO_3$ perovskites, synthesis, structure, and properties, 159, 68 $LaMnO_{3+\delta}$, granular, charge-carrier localization on Mn surface sites in, 160, 123 La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, 156, 117 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, **156**, 143 Li-Fe-Mn-O spinel solid solutions, preparation and characterization, **161,** 152 LiMnO₂, monoclinic-type, MnO₂·0.22H₂O and MnO₂·0.70H₂O synthesis from, 160, 69 LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, NMR and FTIR studies, 160, 368 $Li(Mn,M)_2O_4$ (M = Cr,Co,Ni), 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, 156, 286 Li₂Mn₄O₉, cation-deficient spinels with formula close to, topotactic reactions, structure, and Li intercalation, 160, 108 Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, 158, 148

Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO₄)₃, structural and electrochemical study, 158,

Mn2+, sol-gel SiO2 glass doped with, defects and photoluminescence,

Mn-Al layered double hydroxide, amino acid intercalation by coprecipi-

[Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reac-

Mn₄Cl₈(THF)₆, compounds based on, structural and magnetic study,

 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159,

MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉

chain compound, magnetic properties, 159, 293

tion with tetracyanoethylene, 159, 403

169

160, 272

159, 281

362

tation, 162, 52

[Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, 159, 321

[MnIRuIII(oxalate)3], and decamethylmetallocenium cations, layered molecule-based magnets formed by, 159, 391

 TMn_2Zn_{20} (T = Zr,Hf,Nb) with CeCr₂Al₂₀-type structure, 161,

Na_{1.1}Ca_{1.8}Mn₉O₁₈, synthesis by calcium insertion in Na₄Mn₉O₁₈ tunnel structure, 162, 34

 $Na_xMnO_{2+\delta}$, synthesis by reduction of aqueous sodium permanganate with sodium iodide, 156, 331

Na₄Mn₉O₁₈ tunnel structure, calcium insertion in, **162**, 34

 $Ln_{1.33}Na_xMn_xTi_{2-x}O_6$ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, 161, 294

Nd-Mn-O system, phase equilibrium at 1100°C, 158, 236

Pd₃Mn and Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction studies, 161, 93

polynuclear self-assembled Mn(II) cluster complexes, synthesis, structure, and magnetism, 159, 308

Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, 160, 1

Pr_{0.7-x□}Sr_{0.3}MnO₃ perovskites, physical properties, effect of Pr deficiency, 156, 68

Sr₂MnGaO_{5+δ}, synthesis, crystal structure, and magnetic properties, **160,** 353

surface sites in granular LaMnO_{3+δ}, charge-carrier localization on, 160, 123

Marokite

antiferromagnetism, 160, 167

MCM-41

phase transformation in mother liquid at moderate temperature, 160,

titania-modified, nanosized Pd clusters deposited on, synthesis, characterization, and photoactivity, 162, 138

Mechanical alloying

combustion and continuous reactions during, mechanisms, 158, 268 Mechanical resistance

microporous materials prepared by pyrolysis, estimation, 160, 13 Mechanical stability

microporous materials prepared by pyrolysis, estimation, 160, 13 Mechanochemical activation

Aurivillius oxide production with n = 1, 160, 54

Mechanochemical synthesis

LaOX (X = Cl,Br) and solid state solutions, **160**, 469

Li_{1+x}V₃O₈, reduction processes in, 160, 444

Melting point

V₂O₅ nanocrystals, 159, 181

Mercury

HgBr₂ intercalated Bi₂Sr₂CaCu₂O_v single crystal, polarized X-ray absorption spectroscopy, 160, 39

HgCl₂, mixture with (NH₄)Cl, reactivity with Monel containers, 162, 254

 $HgA_2QCu_2O_{6+z}$ (A = Ba,Sr; Q = rare earth, Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, 162, 1

(Hg₃)₂(HgO₂)(PO₄)₂, synthesis, crystal structure, and thermal behavior, 157, 68

(Hg₃)₃(PO₄)₄, synthesis, crystal structure, and thermal behavior, 157,

[Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, **160**, 88

 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, 161, 355

Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, 158, 94

Metal-atom clustering

in V₅S₈, effects on magnetic properties, 160, 287

Metal-insulator transition

cobaltites(III) and cobaltites(IV) with perovskite or related structure, **162**, 282

 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355

Metal ions

orbitally degenerate, magnetic exchange between, associated magnetic anisotropy, 159, 268

Metallocene charge-transfer salts

design and synthesis, 159, 420

Metal-metal distance

in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), 160, 93

Metal-metal sigma bonding

effects on structures and physical properties of Sr_{9/8}TiS₃, Sr_{8/7}TiS₃, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103

Metal-organic frameworks

Co(II), Cu(II), and Ni(II) with bis(trans-4-pyridylacrylate), hydrothermal syntheses and crystal structures, 157, 166

Cu(II) coordination networks with chessboard tunnels, hydrothermal synthesis, crystal structure, and magnetic properties, 158, 315

Metal triangles

high-temperature reactions, effects of counterion, ligand, and metal, **159,** 321

Metamagnetism

 $A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3$ (A = La,Nd,Dy,Ho,Yb), 160, 350

Fe₄Cl₈(THF)₆-based compound, 159, 281

layered cobaltous terephthalate, 159, 343

Metathesis reactions

 $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir) with tetrapropylammonium and -phosphonium ions, 157, 324

Methane

oxidation, structural change of goethite in, in situ XRD and IR study, 156, 225

4-Methylbenzaldehyde

intercalation into VOPO₄, 157, 50

Microdomains

in K₂In₁₂Se₁₉, **161**, 385

Microporous materials

prepared by pyrolysis, mechanical stability and resistance, estimation, **160**, 13

Misfit layer compounds

[Ca₂CoO₃][CoO₂]_{1.62}, 4D structural study, 160, 322

Mixed-valence compounds

synthesis, 159, 51

Modules

L-Ta₂O₅ and related structures, **160**, 62

Molecular clusters

 $M_4\text{Cl}_8(\text{THF})_6$ (M = Mn,Fe,Co), compounds based on, structural and magnetic study, 159, 281

formation by self-assembly of molecular magnets, 159, 262

Mn-Cr-CN, magnetic properties, 159, 293

Molecular dynamics

kinetics of phase changes in clusters: crystal nucleation of (RbCl)₁₀₈ clusters at 600, 550, and 500 K, 159, 10

simulation of structural phase transitions in RbNO₃ and CsNO₃, 160,

simulation of thermal expansion in La-based perovskites, 156, 394

Molecular magnets

library of, design and synthesis by charge-transfer salt approach, 159,

magnetic anisotropy in, control, 159, 253

α-nitronyl nitroxide radicals, chirality in solid state, 159, 440

preface to special issue on, 159, 251

self-assembly, versatile building blocks for, 159, 262

Molybdenum

Bi₂MoO₆ Aurivillius compound, production by mechanochemical activation, 160, 54

Bi_{1.1}Sb_{0.9}MoO₆, structure refinement, **159**, 72

CdTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401

 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209

CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401

Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413

[{Cu(2,2'-bpy)₂} $_2$ Mo $_8$ O $_2$ 6], hydrothermal synthesis and crystal structure, **161**, 173

 $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39},$ crystallization and structural characterization, $161,\,85$

H_xMoO₃ bronze, leaching treatments, 159, 51

hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87

δ-KMo₂P₃O₁₃, revised space groups, 159, 7

La₂Mo₄O₁₅, crystal structure, ab initio determination from X-ray and neutron powder diffraction, 159, 228

 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \ \textbf{159}, \ 7$

Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160, 156

MoS₂, hydrothermal synthesis and pressure-related crystallization, **159**, 170

 A_x Mo_yW_{1-y}O₃ (A = K,Ce), intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341

Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7

 $W_x Mo_{(1-x)} S_2$ lamellar solid solution, two cation disulfide layers in, 160, 147

Monel containers

(NH₄)Cl/HgCl₂ mixture reactivity in, 162, 254

Monoalkyl aluminum(III) compounds

reduction, Na/K alloy for, 162, 225

Mono-L-valinium nitrate

crystal structure and vibrational spectra, 158, 1

Mössbauer spectroscopy

Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, 159, 46

 $[CoCp_2^*][FeRu(C_2O_4)_3]$, 159, 391

 $\text{Cu}_{5.52(8)}\text{Si}_{1.04(8)}\square_{1.44}\text{Fe}_4\text{Sn}_{12}\text{S}_{32}$ thiospinel, 161, 327

 $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), **156**, 339

EuPd₃S₄, 157, 117

Eu₃RuO₇, **158**, 245

 $M^{\rm II}M^{\rm IV}$ F₆ ($M^{\rm II}$ = Ni,Pd,Cu; $M^{\rm IV}$ = Pd,Pt,Sn), **162**, 333

 $[FeCp_2^*][FeRu(C_2O_4)_3]$, 159, 391

FeSb₂S₄, 162, 79

hydrogen fluoride impact on tin probe ions located on Cr₂O₃ microcrystal surface, **162**, 293

 $Li_xNi_{0.70}Fe_{0.15}Co_{0.15}O_2$ system, **159**, 103

Mg-Fe-O and Mg-Fe-Al-O complex oxides: analysis of reduction reaction, **161**, 38

Na₃Fe(PO₄)₂: glaserite-like structure, **160**, 377

 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0, 0.5, 1.0), **156,** 349

 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, **162**, 113

TlFeO₃: structural distortion and chemical bonding, **161**, 197

Zn doping effects on α-Fe₂O₃, 156, 408

Multivariate data analysis

modeling structure-property relationships of superconductive cuprates, 162, 1

Ν

Nanocomposites

Al-Ti, Al-Ti-Zr, Al-Zr, Si-Al, Si-Ti, and Si-Zr with lamellar or hexagonal structure, synthesis and characterization, 158, 134

Nanocrystals

Ag₂Te and Ag₇Te₄, sonochemical synthesis, **158**, 260

 $AIO(OH)\cdot\alpha H_2O,$ monoclinic crystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40

binary metal chalcogenides, synthesis in alkaline aqueous solution, 161, 184

TiO₂

anatase, preparation, characterization, and spectral studies, **158**, 180 ultrafine powder, preparation, characterization, and low-temperature heat capacities, **156**, 220

VO₂ powder, preparation and characterization, 156, 274

V₂O₅, preparation and characterization, **159**, 181

 $VO_2 \cdot H_2O$ with needle-like structure, metastable phase and phase transformation, 157, 250

Nanoparticles

Ag₂Se, synthesis by laser-solid-liquid ablation, **160**, 430

(Fe@Au), synthesis, characterization, and magnetic field-induced selfassembly, 159, 26

 Fe_2O_3 , pillaring of $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with,

fluorite-type ceria-zirconia solid solutions, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112

Pd clusters deposited on titania-modified mesoporous MCM-41, synthesis, characterization, and photoactivity, **162**, 138

WO_{3-x}, structure and reduction leading to WS₂ formation, **162**, 300 yttria-stabilized zirconia, synthesis by molecular decomposition process, **157**, 149

Nanorods

CuInS₂, hydrothermal synthesis and characterization, 161, 179

PbSnS₃, prepared via iodine transport hydrothermal method, characterization, **160**, 50

tin sulfide, preparation and morphology control via ethanol thermal route, **161**, 190

Nanotubes

carbon, formation from fullerenes under hydrothermal conditions, 160, 184

NH₄(SbO)₃(CH₃PO₃)₂, synthesis and structure, 162, 347

 WS_2 , formation via WO_{3-x} reduction, **162**, 300

NASICON structures

ionic conductivity in, modeling, 156, 154

mixed α/β superstructure, **156**, 305

rhombohedral, Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with, **162**, 176

Negative capacitance

V₂O₃, **159**, 41

Negative magnetization

GdCrO₃ perovskite, 159, 204

Neodymium

BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163

Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113

 $BaNd_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, **159.** 163

fluorinated Nd₂CuO₄, HREM study, 157, 56

KNdTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225

NdAgMg, synthesis and crystal structures, 161, 67

Nd₂BaCuO₅ and Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42

 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, synthesis and structure, **156**, 370

NdCa₉(VO₄)₇, synthesis and structure, 157, 255

Nd(Co_{1/2}Mn_{1/2})O₃, phonon modes, **160**, 350

NdCrO₄, magnetic and crystallographic properties, 160, 362

Nd-Mn-O system, phase equilibrium at 1100°C, 158, 236

 $Nd_{1.33}Na_xMn_xTi_{2-x}O_6$ (x = 0.66,0.55), conductivity and magnetic properties, **161**, 294

 $NdBO_3$ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

Nd₂O₂CO₃ II, crystal structure, 158, 14

NdOF-NdF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure, **157**, 134

Nd₂Si₂O₇, type K structure at high pressure, 161, 166

[Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243

RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299 Rb₃Nd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

Neptunium

neptunium–germanium binary system, structural chemistry, **156**, 313 Neutron diffraction, *see also* Powder neutron diffraction

 $Ca_3Co_{1+x}Mn_{1-x}O_6$ and Ca_3CuMnO_6 quasi-one-dimensional oxides,

CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25

superconductive cuprates: structure-property relationships, 162, 1

 $TICr_5S_{8-y}Se_y$ (y=1-7): spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198

Nickel

BaKCu₃NiS₄, electrical and magnetic properties, 157, 144

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184

 $Ca_3Ni_8In_4$, ordered noncentrosymmetric variant of $BaLi_4$ type, **160**, 415 $Ce_2Ni_{22}C_{2.75}$, nonintegar Ce valency in, **161**, 63

α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102

[Cr(CN)₆]₂[Ni(L)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302

 $Cu_xNi_{1-x}(HCOO)_2 \cdot 2H_2O$, crystal structure and thermal behavior, 157, 23

 $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364

Li(Mn,Ni)₂O₄, 5V cathode materials for lithium-ion secondary batteries, in situ XAFS analysis, **156**, 286

 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, X-ray diffraction and Mössbauer study, 159, 103

 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z=0.075), single-crystal growth and structural chemistry, **160**, 178

 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, structure, neutron diffraction study, 158, 187

Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160, 156

 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, 160, 450

 $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, **162**, 254

 $\mathrm{Ni^{2}}^{+}$, sol-gel $\mathrm{SiO_{2}}$ glass doped with, defects and photoluminescence, 160, 272

NiPnCh (Pn = P,As,Sb; Ch = S,Se,Te), preparation and crystal structure, **162**, 69

Ni-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52

ANi₂B₂C (A = Lu,La,Th), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93

 $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166

nickel-cobalt oxyhydride electrodes of alkaline batteries, outcome of cobalt in, **162**, 270

Ni(II) complexes with imino nitroxyl diradical, magnetic properties, 159, 455

[Ni(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352

NiM^{IV}F₆ (M^{IV} = Pd,Pt,Sn), preparation, magnetic properties, and pressure-induced transitions, **162**, 333

Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68

NiO, dispersion on γ -Al₂O₃ and TiO₂/ γ -Al₂O₃ supports, 157, 274

 A_x NiO₃ (A = Ca,Sr,Ba), magnetic properties, structural and electronic factors governing, **160**, 239

Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266

 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122

 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191

Ni_{1+x}Te₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266

 TNi_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288 Niobium

 $Ba_4CeNb_{10}O_{30}$, with TTB-type structure, crystal structure, 157, 1

nBa(Nb,Zr)O₃ + 3mNbO (n = 2-5; m = 1), single-crystal X-ray diffraction studies, **156**, 75

Bi_{2.5}Me_{0.5}Nb₂O₉ (Me = Na,K), crystal structure, powder neutron diffraction study, 157, 160

Ca(Ca_{1/3}Nb_{2/3})O₃ complex perovskite, cation ordering types and dielectric properties, **156**, 122

Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, **160**, 257

 $Ca_2Ta_2O_7$ - $Ca_2Nb_2O_7$, 5M and 7M polytypes, **161**, 274

CuNb₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, 156, 110

 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites, pillaring with Fe_2O_3 nanoparticles, **160**, 435

Li-Nb-X systems (X = P,As), synthesis and crystal structure, **156**, 37

Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327

Nb₆Br₈F₇, synthesis and crystal structure, **158**, 327

 $Ln_3Nb_2N_6$ (Ln = La, Ce, Pr), synthesis, structure, and magnetic properties, **162**, 90

 $Nb_{28}Ni_{33.5}Sb_{12.5}$, synthesis and structure, 160, 450

 $A'[A_2Nb_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279

NbOPO₄, with orthorhombic structure, negative thermal expansion, **160.** 230

 NbT'_2Zn_{20} (T' = Mn, Fe, Ru, Co, Rh, Ni) with $CeCr_2Al_{20}$ -type structure, **161**, 288

 $Pb_2(Nb_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, 161, 135

 $SbSb_xNb_{1-x}O_4$, solid solution behavior and second-harmonic generating properties, **161**, 57

 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), synthesis and characterization, 156,

YNbO₄ and YNbO₄:Bi, electronic structures and luminescence properties, 156, 267

Nitrogen

Al(CN)₃, synthesis and structural properties, **159**, 244

Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, 160, 278

BaFe[(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17

 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), synthesis and crystal structure, 159, 174

Be(CN)₂, synthesis and structural properties, 159, 244

- BN multilayered coatings, deposition onto Hi-Nicalon fibers via continuous LPCVD treatment, 162, 358
- Ca₂NF, preparation and single-crystal structure analysis, **160**, 134 $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51
- charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385
- $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233
- $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$, synthesis and structure, **159**, 209
- C₅H₁₂NPO₄H₂, synthesis and crystal structure, **161**, 307
- C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, **156**, 364
- (C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87
- $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198
- (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, synthesis, crystal structure, and NMR, **162**, 168
- [C₆N₄H₂₂][Zn₆(PO₄)₄(HPO₄)₂] formed by one-dimensional tubes, synthesis and crystal structure, 157, 110
- Co(C₈H₆NO₂)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166
- Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371
- CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336
- Co(NH₃)₆(V_{1.5}P_{0.5})O₆OH, hydrothermal synthesis and crystal structure, **159**, 239
- $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, characterization and magnetic properties, **159**, 302
- [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321
- CsNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222
- $Cs_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390
- Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166
- $\begin{array}{lll} & [Cu(H_2NCH_2CH_2NH_2)_2][\{Cu_2Br_4\}] & and & [Cu(H_2NCH_2CH_2NH_2)_2] \\ & & [\{Cu_5Br_7\}], & hydrothermal synthesis and X-ray crystal structure, \\ & \textbf{158.} & 55 \end{array}$
- $\begin{array}{l} \text{[Cu$_{12}$Ln$_6$(μ_3-OH)$_{24}$(C$_5$H$_5$NCH$_2$CO$_2$)$_{12}$(H_2$O)$_{18}$($\mu_9$-NO$_3$)]$(PF$_6$)$_{10}$ \\ \text{(NO$_3$)$_7$} \cdot 12\text{H}_2\text{O} (Ln^{\text{III}} = \text{Sm}^{\text{III}},\text{Gd}^{\text{III}}), \text{ synthesis and characterization,} \\ \textbf{161}. \ 214 \end{array}$
- Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278
- [M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352
- N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312
- β-HfNCl, high-pressure synthesis and crystal structure, **159**, 80
- $K_{0.2}Co_{1.4}[Fe(CN)_6] \cdot 7H_2O$, microstructural changes induced by thermal treatment, 156, 400
- γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73
- $[(Me_3Sn_3)_3M(CN)_6]$ ($M = Co_3Ir$), metathesis reactions with tetrapropylammonium and -phosphonium ions, **157**, 324
- metal complexes with imino nitroxyl diradical, magnetic properties, 159, 455
- Mg:Al layered double hydroxide and hexacyanoferrate, physical and chemical interactions between, **161**, 249
- Mg(CN)₂, synthesis and structural properties, 159, 244
- Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, uniaxial orientational order–disorder transitions, neutron diffraction study, **156**, 487

- [Mn^{II}(t-Bu)₄salen]₂, preparation, magnetic characterization, and reaction with tetracyanoethylene, **159**, 403
- MnCr₆(CN)₁₈ and Mn₃Cr₆(CN)₁₈ molecular species and MnCr₃(CN)₉ chain compound, magnetic properties, **159**, 293
- [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328
- $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328
- $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2\cdot C_4N_2H_{12}\cdot H_2O,$ synthesis and characterization, **156**, 32
- [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321
- $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \mbox{\bf 159, 7}$
- $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb), synthesis, structure, and magnetic properties, **162**, 90
- (NC₅H₁₂)₂·Zn₃(HPO₃)₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, **160**, 4
- $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), syntheses, vibrational spectroscopy, and crystal structure, **157**, 241
- $(ND_4)_4D_2(SeO_4)_3$, crystal structure below 180 K, **160**, 189
- $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59
- $(NH_4)_2(NH_3)_x[Ni(NH_3)_2Cl_4]$, preparation and crystal structure, 162,
- $Ni(C_8H_6NO_2)_2(H_2O)_2$ interpenetration networks, hydrothermal synthesis and crystal structure, **157**, 166
- $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, solvothermal synthesis and crystal structure, 158, 68
- nitride superconductors, anionic charge order model, 158, 139
- α -nitronyl nitroxide radicals, chirality in solid state, **159**, 440
- Pb₃O₂(OH)(NO₃), crystal structure, 158, 78
- Pb₁₃O₈(OH)₆(NO₃)₄, crystal structure, 158, 74
- plasma, reaction with TiAl intermetallics, 157, 339
- polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, **159**, 308
- [$(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O$] and [$(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O$], crystal structures, **157**, 324
- RbNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222
- $Rb_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390
- $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96
- Tl^ITl^{III}(CN)₄, synthesis and structural properties, **159**, 244
- tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground spin states, 159, 428
- 1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, **159**, 451
- β -ZrNCl, high-pressure synthesis and crystal structure, **159**, 80 Nitrogen adsorption isotherm
- α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; *erratum*, **160**, 292
- α-Nitronyl nitroxide radicals
 - chirality in solid state, 159, 440
- Nocolok flux
- AlF₃-KF-CsF compositions for, **161**, 80
- Nuclear magnetic resonance
 - (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, **162**, 168 hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, **159**, 87

LiMn₂O₄ spinel cathode prepared by tartaric acid gel process, **160**, 368 local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 β -PbO, quantum *ab initio* explanation, **157**, 220

polyoxovanadates synthesized from aqueous solution, 162, 315

rhodamine B in lactone form, 156, 325

 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), **156**, 349

structural aspects of solid-state polycondensation reaction in alkali 4-halogenomethylbenzoates, **156**, 61

Nucleation

(RbCl)₁₀₈ clusters at 600, 550, and 500 K, molecular dynamics studies, **159**, 10

0

Octacyanometalate complexes

as building blocks for self-assembly of molecular magnets, **159**, 262 Optical microscopy

Bi₂TeO₅ oxidation studies, 161, 365

Optical properties

RbEr₂Cu₃S₅ and Rb₂Gd₄Cu₄S₉, 158, 299

 $LnSbS_2Br_2$ (Ln = La,Ce), **158**, 218

Orbital degeneracy

metal ions with, magnetic exchange between, associated magnetic anisotropy, 159, 268

Order-disorder transitions

(Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, **161**, 348

uniaxial orientational, in Mg(ND₃)₂Cl₂ and Mg(ND₃)₂Br₂, neutron diffraction study, **156**, 487

Ordering

cation ordering types in complex perovskite Ca(Ca_{1/3}Nb_{2/3})O₃, effects on dielectric properties, **156**, 122

CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34

incommensurate occupational, Ni in Ni_{1+x}Sn (0.35 < x < 0.45) NiAs/Ni₂In-type phase, **159**, 191

 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) and $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) perovskites, **158**, 290

short-range ferromagnetic, $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, 159, 215

Organic antiferromagnetic metals

 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

Organic-cation cyclotetraphosphate

 $\tilde{C}_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, crystal structure, thermal analysis, and vibrational spectra, **156**, 364

Organo-inorganic hybrid compounds

nitrilophosphonates of Al and Cu, synthesis and characterization, 160, 278

Osmium

NaLa₆(Os)I₁₂, synthesis and structure, 161, 161

Oxalate

 $\begin{array}{ll} [(S)\text{-}C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] & \text{and} & [(S)\text{-}C_5H_{14}N_2][Fe_4(C_2O_4)_3\\ & (HPO_4)_2(H_2O)_2], \text{ synthesis and characterization, } \textbf{157, } 233 \end{array}$

 $[M^{II}Ru^{II}(ox)_3]$ ($M^{II} = Mn$, Fe, Co, Cu, Zn), and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391

Oxidation

Bi₂TeO₅, thermoanalytical and optical microscopic studies, **161**, 365 methane, structural change of goethite in, *in situ* XRD and IR study, **156**, 225

Oxidation state

Cu and Ru in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, **156**, 194

Oxidative thermal decomposition

BaFe[(CN)₅NO]·3H₂O, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17

Oxygen

excess, in low Sr doping $\text{La}_{1-x}\text{Sr}_x\text{MnO}_{3+\delta}$ epitaxial films, **156**, 143 nonstoichiometry in YBaCo₂O_{5+x} (0.00 $\leq x \leq$ 0.52), **156**, 355 permeation of Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta} (x = 0.2-0.8), **156**, 437

Oxyhydroxyapatite

heat-treated microcrystals, local structure in, solid state NMR, XRD, and IR studies, **160**, 460

Ozone

oxidation, α-MnO₂ open tunnel oxide precipitated by, preparation and characterization, **159**, 94; erratum, **160**, 292

Ρ

Palladium

EuPd₃S₄, Mössbauer effects and magnetic properties, 157, 117

 $MgPd_2$, $MgPd_3$, and Mg_3Pd_5 , structure and thermal stability, and kinetics of iodine-catalyzed $MgPd_2$ formation, **159**, 113

nanosized clusters deposited on titania-modified mesoporous MCM-41, synthesis, characterization, and photoactivity, **162**, 138

PdPnCh (Pn = P,As,Sb; Ch = S,Se,Te), preparation and crystal structure, **162**, 69

 APd_2B_2C (A = Lu,La,Th), metal-metal distances, electron counts, and superconducting T_C 's, 160, 93

PdM^{IV}F₆ (M^{IV} = Pd,Pt,Sn) and M^{II}PdF₆ (M^{II} = Ni,Pd,Cu), preparation, magnetic properties, and pressure-induced transitions, **162**, 333

Pd₃Mn and Pd₃MnD_{0.7}, magnetic structures, high-pressure neutron diffraction studies, **161**, 93

Paracelsian

ammonium zinc gallophosphate analog of, synthesis and structure, **156**, 480

Paracrystals

cellular, formation from Co-doped CaO polycrystals, 161, 341

Paramagnetic transition

 $La_{0.6}(Sr_{0.4-x}Ba_x)MnO_3$, **156**, 117

Pechini process

 $Bi_2Ru_2O_7$ pyrochlore oxide synthesis in alkaline medium, 161, 379 Peierls distortion

infinite $[Te_x]^{n-}$ chains in RbUSb_{0.33}Te₆, **161**, 17

Pentanuclear complexes

cyanide-bridged, with high spin ground states S=6 and S=9, characterization and magnetic properties, **159**, 302

Periodic domain boundary

alkali titanium oxides, 162, 128

Perovskites

 $(Ba_8Co_6O_{18})_z(Ba_8Co_8O_{24})_\beta$ polysomatic series, new members of, 162, 322

BaHfO₃, Pr⁴⁺ ions doped in, EPR study, 156, 203

nBa(Nb,Zr)O₃ + 3mNbO (n = 2-5; m = 1), single-crystal X-ray diffraction studies, **156**, 75

Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113

Ca(Ca_{1/3}Nb_{2/3})O₃, cation ordering types and dielectric properties, **156**, 122

 $Ca_{0.5}Sr_{0.5}TiO_3$, space group and structure, 160, 8

cobaltites(III) and cobaltites(IV), spin state behavior, 162, 282

Dion-Jacobson-type, layered, $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta), synthesis, structure, and electrical conductivity, **158**, 279

GdCrO₃, magnetic properties, 159, 204

 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$, pillaring with Fe_2O_3 nanoparticles, **160**, 435 La-based, thermal expansion in, computer simulations, **156**, 394

 $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2), lattice distortion in, pressure dependence, **160**, 307

CdGa₂Se₄, induced by pressure, 160, 205

```
La<sub>2</sub>Ca<sub>2</sub>MnO<sub>7</sub>, detection in La-Ca-Mn-O system, 156, 237
  ALaFeVO<sub>6</sub> (A = Ca,Sr) double-perovskite oxide, synthesis, structure,
        and propertiess, 162, 250
  LaMn<sub>1-x</sub>Li<sub>x</sub>O<sub>3</sub>, synthesis, structure, and properties, 159, 68
  La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}, oxidation states of Cu and Ru in, determina-
        tion by XANES measurements, 156, 194
  MLa_2Ti_2TaO_{10} (M = Cs,Rb) layered perovskites, structure, 158, 290
  lead-free relaxor ferroelectrics, solid state chemistry, 162, 260
  NaLa_2Ti_2TaO_{10} \cdot xH_2O (x = 2,0.9,0) layered perovskites, structure,
  Ln_{1.33}Na_xMn_xTi_{2-x}O_6 (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55),
        conductivity and magnetic properties, 161, 294
  ABO_3 (A = La-Nd; B = Dy-Lu), preparation, magnetic susceptibility,
        and specific heat, 157, 173
  A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), magnetic properties, structural and
        electronic factors governing, 160, 239
  Pr<sub>0.7-x□</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>, physical properties, effect of Pr deficiency, 156, 68
  Sr_{1-x}Ba_xZrO_3, effects of composition and temperature, high-resolution
        powder diffraction study, 161, 106
  (Sr<sub>1-x</sub>Ca<sub>x</sub>)TiO<sub>3</sub> with composition (x), evolution of crystallographic
       phases in, 162, 20
  Sr<sub>2</sub>CoSbO<sub>6-δ</sub> and Sr<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>, synthesis, structure, and physical prop-
       erties, 157, 76
  Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta} (x = 0.2-0.8), transport properties and thermal
        expansion, 156, 437
  SrTiO<sub>3</sub>-SrZrO<sub>3</sub> solid solution, crystal structure and phase transitions,
        156. 255
  Sr_{9/8}TiS_3, Sr_{8/7}TiS_3, and Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3, structures and physical
        properties, effects of metal-metal sigma bonding, 162, 103
  LnTi_0 {}_5V_0 {}_5O_3 (Ln = Ce,Pr), magnetic properties, 156, 452
  TIFeO<sub>3</sub>, structural distortion and chemical bonding, comparison with
        AFeO_3 (A = rare earth), 161, 197
  effect on properties of sol-gel Rh/SiO<sub>2</sub>, 158, 154
Phase diagram
  AlF<sub>3</sub>-KF-CsF, 161, 80
  Al-Li-Si system in solid state, 156, 500
  Ca_{1-x}Y_xMnO_3, 156, 458
  Eu<sub>2</sub>O<sub>3</sub>-SrO-CuO system, 156, 247
  La-Ca-Mn-O system, 156, 237
  \text{Li}_2\text{O}-Ln_2\text{O}_3-\text{B}_2\text{O}_3 (Ln=\text{Yb},\text{Lu}): discovery of \text{Li}_2Ln_5\text{O}_4(\text{BO}_3)_3 and
        structural analysis of Yb phase, 156, 161
  magnetic, Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O, 159, 362
  Mg_{1-x}Cu_{2+x}O_3 (0.130 \leq x \leq 0.166), 160, 251
  Mo-Ni-P ternary phases, 160, 156
  NH_4Ln_3F_{10} (Ln = Dy, Ho, Y, Er, Tm), 158, 358
  YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355
Phase equilibrium
  Al-Li-Si system in solid state, 156, 500
  Ca<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub>-CaTiO<sub>3</sub>, 160, 257
  La-Ca-Mn-O system, 156, 237
  Nd-Mn-O system at 1100°C, 158, 236
Phase relations
  in Fe<sub>2</sub>O<sub>3</sub>-Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> between 1000 and 1300°C, 161, 45
  ZrO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> at 1500°C, 160, 302
Phase separation
  YBaCo_2O_{5+x} (0.00 \le x \le 0.52), 156, 355
Phase transition
  antiferromagnetic, CdCr<sub>2-x</sub>Ga<sub>x</sub>Se<sub>4</sub> spinel system, 158, 34
  antiferromagnetic insulator-paramagnetic, V2O3 undergoing, conduc-
        tivity studies, 159, 41
  Ba<sub>3</sub>NdRu<sub>2</sub>O<sub>9</sub> 6H-perovskite, 161, 113
  BaZnCl<sub>4</sub>-II:Sm<sup>2+</sup>, 162, 237
```

 κ -(BETS)₂FeX₄ (X = Cl,Br), effect of halogen substitution, **159**, 407

```
in clusters, kinetics, molecular dynamics studies, 159, 10
  CsNO<sub>3</sub>, molecular dynamics simulation, 160, 222
  2,2-dinitropropane-1,3-diol, 157, 296
  ferroelectric, detection in Eu<sub>2</sub>GeS<sub>4</sub>, 158, 343
  FeSb<sub>2</sub>S<sub>4</sub>, 162, 79
  KIn(WO<sub>4</sub>)<sub>2</sub>, vibrational study, 158, 334
  La_{2-x}Ca_{1+2x}Mn_2O_7 electron-doped layered phase, 157, 309
  LiKSO<sub>4</sub>, thermal analysis and X-ray diffraction study, 148, 316; com-
        ments, 156, 251, 253
  LiVO<sub>3</sub>, solid-liquid, neutron powder diffraction study from 340 to 890
        K, 156, 379
  magnetic bistability in organic crystals at room temperature, compari-
        son with spin crossover transitions, 159, 451
  MCM-41 in mother liquid at moderate temperature, 160, 311
  mono-L-valinium nitrate at low temperature, DSC, FTIR, and XRD
        study, 158, 1
  NbOPO<sub>4</sub> with orthorhombic structure, 160, 230
  (ND_4)_4D_2(SeO_4)_3 and (NH_4)_4H_2(SeO_4)_3, 160, 189
  Pierels-type, TlTe, 157, 193
  polymorphic, in 3-bromo-trans-cinnamic acid system, 156, 10
  RbNO<sub>3</sub>, molecular dynamics simulation, 160, 222
  Ln_3 RuO_7 (Ln = Sm, Eu), 158, 245
  SiO<sub>2</sub>, amorphous phase to crystalline phase, effects of alkali ions,
        161, 373
  Sr<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> at elevated temperatures, 156, 292
  SrHfO<sub>3</sub>: temperature dependence of hyperfine interaction at <sup>181</sup>Ta
        probe, 159, 1
  SrTiO<sub>3</sub>-SrZrO<sub>3</sub> solid solution, 156, 255
  strain-driven, pyrochlore to defect fluorite in rare earth sesquioxide-
        stabilized cubic zirconias, 159, 121
  VO<sub>2</sub>·H<sub>2</sub>O needle-like nanocrystals, 157, 250
  ZrO<sub>2</sub> crystallization in sol-gel system, 158, 349
  ZrP<sub>2</sub>O<sub>7</sub>, 3-D incommensurately modulated cubic phase, 157, 186
Phonon modes
  A(\text{Co}_{1/2}\text{Mn}_{1/2})\text{O}_3 (A = \text{La,Nd,Dy,Ho,Yb}), 160, 350
Phosphors
  SrIn<sub>2</sub>O<sub>4</sub>, emitting red light and activated by praseodymium, luminescent
        properties, 156, 84
  YNbO<sub>4</sub> and YNbO<sub>4</sub>:Bi, electronic structures and luminescence proper-
        ties, 156, 267
Phosphorus
  Ag<sub>2</sub>FeMn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> with alluaudite-like structure, neutron diffraction,
        Mössbauer spectrum, and magnetic behavior, 159, 46
  Al[(HO<sub>3</sub>PCH<sub>2</sub>)<sub>3</sub>N]H<sub>2</sub>O, synthesis and characterization, 160, 278
  BiMn<sub>6</sub>PO<sub>12</sub>, preparation, structure, and magnetic properties, 157, 123
  CdBa<sub>3</sub>(HPO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>, synthesis, crystal structure, and vibrational
        spectra, 161, 97
  Cd_{5-\eta/2}(PO_4)_3Br_{1-\eta}, modified chimney-ladder structures with lad-
        der-ladder and chimney-ladder coupling, 156, 88
  [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2] and [(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3]
        (HPO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], synthesis and characterization, 157, 233
  [(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_{12}^V(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}], synthesis and
        structure, 159, 209
  C<sub>5</sub>H<sub>12</sub>NPO<sub>4</sub>H<sub>2</sub>, synthesis and crystal structure, 161, 307
  C<sub>10</sub>H<sub>28</sub>N<sub>4</sub>P<sub>4</sub>O<sub>12</sub>·4H<sub>2</sub>O, crystal structure, thermal analysis, and vibra-
        tional spectra, 156, 364
  (C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O with layer structure, synthesis,
        crystal structure, and NMR, 162, 168
  [C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2] formed by one-dimensional tubes,
        synthesis and crystal structure, 157, 110
  Co<sub>3</sub>[BPO<sub>7</sub>], synthesis and characterization, 156, 281
```

Co(NH₃)₆(V_{1.5}P_{0.5})O₆OH, hydrothermal synthesis and crystal struc-

ture, 159, 239

 $Cs_2Co_3(HPO_4)(PO_4)_2 \cdot H_2O$, synthesis and characterization, **156**, 242 $Cs_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390

 $\begin{array}{l} [Cu_{12}Ln_6(\mu_3\text{-OH})_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9\text{-NO}_3)](PF_6)_{10} \\ (NO_3)_7\cdot 12H_2O\ (Ln^{III}=Sm^{III},Gd^{III}), \ synthesis\ and\ characterization, \\ \textbf{161,}\ 214 \end{array}$

Cu₃[(O₃PCH₂)₂NH₂]₂, synthesis and characterization, **160**, 278

fluoroaluminophosphate chain AlPO-CJ10, synthesis and characterization, **161**, 259

germanium pyrophosphates, syntheses, structures, and thermal expansion, **156**, 213

(Hg₃)₂(HgO₂)(PO₄)₂, synthesis, crystal structure, and thermal behavior, 157, 68

157, 68 (Hg₃)₃(PO₄)₄, synthesis, crystal structure, and thermal behavior, 157, 68

[Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88

Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, **158**, 94

 $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and $25^{\circ}C$, 156, 264

 $K_4[Cd_3(HPO_4)_4(H_2PO_4)_2]$, synthesis and layered structure, 162, 188

K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195

 δ -KMo₂P₃O₁₃, revised space groups, 159, 7

KSmP₂S₇, structure modification, **160**, 195

Li₂FeTi(PO₄)₃ and Li₂FeZr(PO₄)₃, mixed α/β superstructures, **156**, 305

 $Li_{0.5}Mn_{0.5}Ti_{1.5}Cr_{0.5}(PO_4)_3$, structural and electrochemical study, 158, 169

Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, **162**, 176

linear-chain aluminum phosphates, synthesis by reaction of amine phosphates with Al³⁺ ions, **156**, 185

Li-M-P (M = V,Nb,Ta), synthesis and crystal structure, **156**, 37

γ-Li₃PO₄, ionic conductivity, theoretical study, **161**, 73

γ-Li_{2.88}PO_{3.73}N_{0.14}, ionic conductivity, theoretical study, **161**, 73

Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29

 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362

 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2\cdot C_4N_2H_{12}\cdot H_2O,$ synthesis and characterization, **156**, 32

 $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space groups, \ \textbf{159}, \ 7$

Mo-Ni-P system, ternary phases in, synthesis and crystal structures, 160. 156

Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195

Na₃Fe(PO₄)₂, glaserite-like structure, **160**, 377

NaHPO₃F · 2.5H₂O, synthesis and crystal structure, 156, 415

Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213

Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415

NaSmP₂S₆, structure modification, 160, 195

NaYbP₂S₆, structure modification, 160, 195

NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8

NbOPO₄, with orthorhombic structure, negative thermal expansion, **160**, 230

(NC₅H₁₂)₂·Zn₃(HPO₃)₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, 160, 4

(NH₄)[Ce^{IV}F₂(PO₄)], hydrothermal synthesis and characterization, 157, 180

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59

NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, synthesis and structure, 162, 347

 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, **156**, 480

Ni(HP₂O₇)F·C₂N₂H₁₀ with chain structure, solvothermal synthesis and crystal structure, **158**, 68

TPCh (T = Ni,Pd; Ch = S,Se,Te), preparation and crystal structure, **162.** 69

PbVOP₂O₇ with intersecting tunnel structure, **162**, 354

 $M_{10}(PO_4)_6X_2$ (M = Ca, Pb, Ba; X = F, OH), electrical properties, 156, 57

 $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, 157, 324

Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7

 $Rb_3P_6N_{11}$, high-pressure high-temperature synthesis and crystal structure, **156**, 390

Sb₂O(CH₃PO₃)₂, synthesis and layered structure, 162, 347

 α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, **159**, 130

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, $\pmb{161,\,233}$

SrFe₂(PO₄)₂ and Sr₉Fe_{1.5}(PO₄)₇, synthesis and characterization, **162**, 113

Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, hydrothermal synthesis and characterization, **159**, 139

 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96

VOPO₄, aldehyde intercalation into, 157, 50

ZrP₂O₇, 3-D incommensurately modulated cubic phase in, symmetry characterization via temperature-dependent electron diffraction, 157, 186

Photoactivity

Pd nanosized clusters deposited on titania-modified mesoporous MCM-41, 162, 138

Photoirradiation

induction of charge transfer processes with spin transition on CoFe(CN)₅NH₃·6H₂O, **159**, 336

Photoluminescence spectra

Ni²⁺- and Mn²⁺-doped sol-gel SiO₂ glass, **160**, 272

SrIn₂O₄ phosphors emitting red light and activated by praseodymium, 156, 84

Piezosensors

 $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333

Pillaring

 $K_{1-x}La_xCa_{2-x}Nb_3O_{10}$ layered perovskites with Fe $_2O_3$ nanoparticles, 160, 435

Piperazine

manganese phosphate templated by, synthesis and characterization, 156, 32

Plasma-spray procedure

thermal decomposition of hydroxyapatite during, 160, 460

Platinum

 $LiCoO_2$ film fabrication on, in flowing aqueous solutions at 150°C, 162, 364

Pt complex, intercalation in LDH compounds, 161, 332

 $M^{\rm II}$ PtF₆ ($M^{\rm II}$ = Ni,Pd,Cu), preparation, magnetic properties, and pressure-induced transitions, **162**, 333

Pnictogenides

Li-M-X systems (M = V,Nb,Ta; X = P,As), synthesis and crystal structure, **156.** 37

Polyarylmethyl polyradicals

as organic spin clusters, 159, 460

Polycondensation

solid-state, in alkali 4-halogenomethylbenzoates, structural aspects, 156, 61

Polymer capping

effect on TiO2 nanoparticles, 158, 180

Polymers

molecularly doped system, voltage-dependent luminescence properties, 158, 242

Polyoxovanadates

synthesis from aqueous solution, 162, 315

Polysomatic series

 $(Ba_8Co_6O_{18})_{\alpha}(Ba_8Co_8O_{24})_{\beta}$, new members of, **162**, 322

Polythermal diagram

Al-Li-Si system, experimental study and thermodynamic calculation, **156,** 506

 $H_2O(NH_4)_2HPO_4-(NH_4)_2SO_4$ between 0 and 25°C, 156, 264 Potassium

AIF3-KF-CsF, ternary phase diagram and compositions for Nocolok flux. 161, 80

 $BaKCu_3MS_4$ (M = Mn,Co,Ni), electrical and magnetic properties, 157, 144

Bi_{2.5}K_{0.5}Nb₂O₉, crystal structure, powder neutron diffraction study, **157,** 160

effects on amorphous to crystalline phase transition of silica, 161, 373

hydrogen coinserted hydrated potassium molybdenum bronzes, direct synthesis and characterization, 159, 87

 $K_4Cd_2(C_2O_4)_4 \cdot 4H_2O$, synthesis, structure, and properties, 162, 150 K₄[Cd₃(HPO₄)₄(H₂PO₄)₂], synthesis and layered structure, 162,

K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, 156, 400

K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195

 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, **160**, 409

K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385

KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334

K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites, pillaring with Fe₂O₃ nanoparticles, 160, 435

δ-KMo₂P₃O₁₃, revised space groups, 159, 7

K_xMo_yW_{1-y}O₃ intergrowth tungsten bronzes, synthesis and microanalysis, 162, 341

KSmP₂S₇, structure modification, **160**, 195

KLnTiO₄ (Ln = La,Nd,Sm,Eu,Gd,Dy), Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, 161, 225

 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, synthesis and crystal structure, 156, 135

 $K_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, 161, 416

LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, 148, 316; comments, 156, 251, 253

Na/K alloy for reduction of monoalkyl aluminum(III) compounds, **162**, 225

substitution in Pb₅Ta₁₀O₃₀, effect on ferroelectric properties, 157, 261

Potential energy calculations

in structural analysis of 2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161, 121

Powder neutron diffraction

Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, **159**, 46

Bi_{4.86}Li_{1.14}O₉, ab initio monoclinic structure determination, **162**, 10

 $Bi_{2.5}Me_{0.5}Nb_2O_9$ (Me = Na,K): crystal structure, 157, 160

 $Bi_{1.1}Sb_{0.9}MoO_6$, **159**, 72

Ca_{0.5}Sr_{0.5}TiO₃ perovskite: space group and structure, **160**, 8

cation-deficient spinels with formula close to Li₂Mn₄O₉: topotactic reactions, structure, and Li intercalation, 160, 108

La₂Mo₄O₁₅: ab initio crystal structure determination, 159, 228

α-La₂W₂O₉: ab initio structure determination, 159, 223

 $\text{Li}_2\text{FeTi}(\text{PO}_4)_3$ and $\text{Li}_2\text{FeZr}(\text{PO}_4)_3$: mixed α/β superstructures, 156,

 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$: structural study, **158**, 187

LiVO₃: analysis of structural disorder and ionic conductivity from 340 to 890 K, 156, 379

marokite: antiferromagnetic characteristics, 160, 167

Pd₃Mn and Pd₃MnD_{0.7} at high pressure: analysis of magnetic structures, 161, 93

 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x): evolution of crystallographic phases, 162, 20

Sr₂Fe₂O₅: crystal and magnetic structures at elevated temperatures, 156,

 $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, 157, 283

 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19

uniaxial orientational order-disorder transitions in Mg(ND₃)₂Br₂ and Mg(ND₃)₂Cl₂, 156, 487

Powder X-ray diffraction, see also Synchrotron powder X-ray diffraction $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), 159, 174

Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72

2,5-bis(trimethylsilyl)thiophene-S,S-dioxide and related materials, 161, 121

calcium-deficient carbonated hydroxyapatite, 160, 340

CdTeMoO₆ and CoTeMoO₆: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401

CsBSe₃, **157**, 206

germanium pyrophosphates, 156, 213

K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195

 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, 156, 135

La₂Mo₄O₁₅: ab initio crystal structure determination, **159**, 228

α-La₂W₂O₉: ab initio structure determination, 159, 223

LiAlB₂O₅: ab initio structure determination, 156, 181

Li-Fe-Mn-O spinel solid solutions, **161**, 152

 $\text{Li}_x \text{Ni}_{0.70} \text{Fe}_{0.15} \text{Co}_{0.15} \text{O}_2$ system, **159**, 103

 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$

 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251

MgPd₂, MgPd₃, and Mg₃Pd₅, 159, 113

α-MnO₂ open tunnel oxide precipitated by ozone oxidation, **159**, 94; erratum, 160, 292

Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195

Na₃Fe(PO₄)₂: glaserite-like structure, **160**, 377

 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241

 $Ni_{1+x}Se_2$ $CdI_2/NiAs$ type solid solution phase, **161**, 266

 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, 159, 191

 $Ni_{1+x}Te_2$ $CdI_2/NiAs$ type solid solution phase, **161**, 266

nonstoichiometric rutile-type solid solutions in Fe^{II}F₂-Fe^{III}OF system, **161,** 31

order-disorder transition in (Cu_{0.5}Cr_{0.5})Sr₂CuO_x under high-pressure and high-temperature conditions, 161, 348

RbBSe₃, 157, 206

rhodamine B in lactone form, 156, 325

 $SbSb_xM_{1-x}O_4$ (M = Nb^V,Ta^V), **161**, 57

 $Sr_{1-x}Ba_xZrO_3$, effects of temperature and composition, 161, 106

 $(Sr_{1-x}Ca_x)TiO_3$ with composition (x): evolution of crystallographic phases, 162, 20

 $Sr(HC_2O_4) \cdot 1/2(C_2O_4) \cdot H_2O$, 157, 283

 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19

Sr₇Re₄O₁₉, 160, 45

 $Th_2(PO_4)_2HPO_4 \cdot H_2O$, $Th(OH)PO_4$, and $Th_2O(PO_4)_2$, **159**, 139 TIBSe₃, **157**, 206

ZrO₂ crystallization in sol-gel system, 158, 349

Praseodymium

 $BaPr_2MS_5$ (M = Co,Zn), crystal structure and magnetic properties, **159.** 163

La_{1-x}Pr_xCrO₃, magnetic properties, **162**, 84

Pr⁴⁺ ions doped in BaHfO₃ perovskite, EPR study, 156, 203

Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O₃, resistivity under magnetic field, increase by thermal cycling, **160**, 1

PrCa₉(VO₄)₇, synthesis and structure, 157, 255

 $Pr_3T_2N_6$ (T = Ta,Nb), synthesis, structure, and magnetic properties, **162**, 90

 $Pr_{1.33}Na_{0.66}Mn_{0.66}Ti_{1.33}O_6$, conductivity and magnetic properties, 161, 294

 $\begin{array}{ll} \hbox{[(nPr_4N)(Me_3Sn)_2Ir(CN)_6\cdot 2H_2O]} & \hbox{and} & \hbox{[(nPr_4P)(Me_3Sn)_2Co(CN)_6\cdot 2H_2O]}, \\ \hbox{crystal structures, 157, 324} \end{array}$

PrBO₃ (B = Dy-Lu) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173

Pr₃Si₂C₂, subcell structure, **156**, 1

 $Pr_{0.7-x\Box}Sr_{0.3}MnO_3$ perovskites, physical properties, effect of Pr deficiency, **156**, 68

PrTi_{0.5}V_{0.5}O₃, magnetic properties, 156, 452

SrIn₂O₄ red-emitting phosphors activated by, luminescent properties, 156, 84

Pressure

electronic transition induced by, in $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn)$, **162**, 333

induction of phase transitions in CdGa₂Se₄, 160, 205

lattice distortion in perovskite $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x = 0.1,0.15,0.2) under high pressure, **160**, 307

Principal component analysis

modeling structure-property relationships of superconductive cuprates, 162, 1

Propionaldehyde

intercalation into VOPO₄, 157, 50

Prussian blu

analogue $Mn_3[Cr(CN)_6]_2 \cdot 12H_2O$, relationship to $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 159, 328

related building blocks for self-assembly of molecular magnets, 159, 262

Pseudo-fcc cell

 $Bi_{3.5}V_{1.2}O_{8.25}$ superstructure based on, 161, 410

Pulsed laser deposition

PZT pyrochlore thin films on CeO₂ buffered R-plane sapphire substrates, **158**, 40

transparent conducting In₂O₃–ZnO thin films made by, structures and textures, TEM study, **158**, 119

Pyrazine

[M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), synthesis, structural isomerism, and magnetism, 159, 352

Pyridine-iminonitroxide radical

[Cr(CN)₆]₂[Ni(IM2-py)₂]₃·7H₂O pentanuclear complexes, characterization and magnetic properties, **159**, 302

Pyrochlores

Bi₂Ru₂O₇, sol-gel synthesis in alkaline medium, 161, 379

(H₂O)[V₂^{III}F₆] and Pyr-VF₃, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266

 $A_2B_2O_7$ transformation to fluorite structure AO_2 , Raman spectroscopy and defect chemistry modeling, **160**, 25

 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M=Nb,Ta), X-ray structure refinements and strain analysis, **156**, 207

PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40

Sn₂Nb₂O₇, synthesis and characterization, **156**, 349

strain-driven phase transition to defect fluorite in rare earth sesquioxide-stabilized cubic zirconias, **159**, 121

structural relationship to $In(Fe_{1-x}Ti_x)O_{3+x/2}$: at 1300°C in air, **157**, 13 Pyrolysis

microporous materials prepared by, mechanical stability and resistance, estimation, **160**, 13

Q

Quadrupole hyperfine interaction

at ¹⁸¹Ta in SrHfO₃, temperature dependence, 159, 1

Quantum ferroelectrics

 $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20

Quantum size effect

TiO₂ nanoparticles, 158, 180

Quantum tunneling

effects in single-molecule magnets, determination, 159, 253

R

Raman spectroscopy

 $CdBa_3(HPO_4)_2(H_2PO_4)_2$, **161**, 97

 $Ce_{1-x}Bi_xVO_4$ solid solutions, 158, 254, 264

 $Ce_{1-x}Ca_xVO_{4-x}$ (0 $\le x \le 0.41$) solid solutions, **158**, 264

 $Ce_{1-x}M_xVO_{4-0.5x}$ (*M* = Pb,Sr,Ca) solid solutions, **158**, 254

 α -Co₂SiO₄- α -Ni₂SiO₄, **157**, 102

CsBSe₃, **157**, 206

CsH₅(AsO₄)₂, 161, 9

N,N'-dimethylpiperazinium(2+) hydrogen selenite, 161, 312

 β -Ga₂O₃-In₂O₃ conducting solid solutions with composition gradients formed by laser impact, **157**, 94

hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, 159, 87

KIn(WO₄)₂, 158, 334

mono-L-valinium nitrate, 158, 1

 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241

 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, **156**, 370

 $[Nd(XeF_2)_n](AsF_6)_3$ (n = 3,2.5), **162**, 243

PbSnS₃ nanorods prepared via iodine transport hydrothermal method, **160**, 50

pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , **160**, 25 RbBSe₃, **157**, 206

TlBSe₃, **157**, 206

 WO_{3-x} phases leading to WS_2 formation, 162, 300

Rare earths

rare earth sesquioxide-stabilized cubic zirconias, strain-driven pyrochlore to defect fluorite phase transition, 159, 121

Reactive plasma process

reaction of TiAl intermetallics with nitrogen plasma, 157, 339 Reduction

in mechanochemical synthesis of Li_{1+x}V₃O₈, **160**, 444

Mg-Fe-O and Mg-Fe-Al-O complex oxides, analysis by TPR and in situ Mössbauer spectroscopy, 161, 38

monoalkyl aluminum(III) compounds, Na/K alloy for, 162, 225

Relativistic effects

in β -PbO and other lead(II) oxides: quantum *ab initio* explanation of 207 Pb NMR and XANES spectra, **157**, 220

Relaxor behavior

generation by cationic substitutions in Pb₅Ta₁₀O₃₀, **157**, 261

Relaxor ferroelectrics

lead-free, solid state chemistry, 162, 260

Resonance effects

in nonlinear susceptibilities of Co₃BTCA₂(H₂O)₄, **159**, 379

Reverse micelle method

(Fe@Au) nanoparticle synthesis, 159, 26

Rhenium

 ${
m Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355

Re₃O₁₀, preparation and crystal structure, 160, 317

 $Sr_7Re_4O_{19}$, preparation, crystal structure, magnetic properties, and relationship to $Ba_7Ir_6O_{19}$ structure, **160**, 45

Rhodamine B

lactone form, synthesis, characterization, and crystal structure, **156**, 325 Rhodium

CeRhIn₅ heavy fermion materials, crystal growth and intergrowth structure, **158**, 25

Rh/SiO₂ sol-gel, properties of, effects of pH and metal loading, **158**, 154 TRh_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288 Rubidium

 β -RbB₅O₈, crystal structure, **161**, 205

RbBSe₃, synthesis, crystal structure, and properties, 157, 206

Rb₂CdSiO₄, synthesis and crystal structure, **162**, 214

(RbCl)₁₀₈ clusters, crystal nucleation at 600, 550, and 500 K, molecular dynamics studies, **159**, 10

 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, 160, 409

RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299

Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, **158**, 299

RbLa₂Ti₂TaO₁₀ layered perovskites, structure, **158**, 290 RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299

 $Rb_{1.12}(NH_4)_{0.88}SO_4\cdot Te(OH)_6,$ thermal analysis and crystal structure at 435 K, 161, 1

RbNO₃, structural phase transitions, molecular dynamics simulation, **160**, 222

Rb'[A₂B₃O₁₀] (A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279

Rb₃O₂(MoO)₄(PO₄)₄, revised space groups, 159, 7

Rb₃P₆N₁₁, high-pressure high-temperature synthesis and crystal structure, **156**, 390

RbSm₂CuS₄, synthesis, structure, and physical properties, **158**, 299

 $Rb_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, **161**, 416

RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 Ruddlesden-Popper phases

 $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy), synthesized by ion exchange of $HLnTiO_4$, **161**, 225

 $La_{2-x}Ca_{1+2x}Mn_2O_7$, electron-doped layered phase, TEM study, **157**, 309

Ruthenium

Ba₃NdRu₂O₉ 6H-perovskite, crystal structure and magnetic properties, 161, 113

Bi₂Ru₂O₇ pyrochlore oxide, sol-gel synthesis in alkaline medium, **161**, 379

 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, 156, 26 oxidation state in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, determination by XANES measurements, 156, 194

 R_3 Ru₂C₅ (R = Y,Gd–Er), preparation, properties, and crystal structure, **160**, 77

 Ln_3 RuO₇ (Ln =Sm,Eu), magnetic and thermal properties, **158**, 245 [M^{II} Ru^{III}(oxalate)₃] ($M^{II} =$ Mn,Fe,Co,Cu,Zn), and decamethylmetal-locenium cations, layered molecule-based magnets formed by, **159**, 391

 TRu_2Zn_{20} (T = Zr,Hf,Nb) with $CeCr_2Al_{20}$ -type structure, **161**, 288

S

Samarium

BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237

CsSm₂CuSe₄, synthesis, structure, and physical properties, **158**, 299

[Cu₁₂Sm₆(μ_3 -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀ (NO₃)₇·12H₂O, synthesis and characterization, **161**, 214

K₃Sm₄Cu₅Te₁₀, synthesis and structure, **160**, 409

KSmP₂S₇, structure modification, 160, 195

KSmTiO₄, Ruddlesden-Popper phases synthesized by ion exchange of HLnTiO₄, **161**, 225

NaSmP₂S₆, structure modification, **160**, 195

RbSm₂CuS₄, synthesis, structure, and physical properties, 158, 299

Sm-123 high-temperature superconductor doped with Al, structure of Al defect in, electron density study, **161**, 396

SmCa₉(VO₄)₇, synthesis and structure, **157**, 255

SmCrO₄, magnetic and crystallographic properties, 160, 362

SmOF-SmF₃ systems, anion-excess fluorite-related phases in, characterization and defect structure. 157, 134

Sm₃RuO₇, magnetic and thermal properties, 158, 245

Sm₂Si₂O₇, type K structure at high pressure, **161**, 166

Scandium

 $ScB_{19+x}Si_y$, floating zone crystal growth and structure analysis, **160**, 394 $ScCa_0(VO_4)_7$, synthesis and structure, **157**, 255

Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142

Scanning electron microscopy

Aurivillius oxides with n = 1 produced by mechanochemical activation, **160**, 54

chemical degradation of thermally treated ferrite-superconductor multiphase materials, **160**, 332

Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, **159**, 139

ZrO₂ crystallization in sol-gel system, 158, 349

Sealed quartz tube synthesis

 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors, **161**, 355

Second-harmonic generating properties

 $SbSb_xM_{1-x}O_4$ ($M = Nb^v, Ta^v$), **161**, 57

Seebeck coefficient

 $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474

Selenium

Ag₂Se nanoparticles, synthesis by laser-solid-liquid ablation, **160**, 430 $Bi_{2-x}In_xSe_3$ single crystals, transport properties, **160**, 474

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184

CdCr_{2-x}Ga_xSe₄ spinel system, metal ion distribution and magnetic properties, **158**, 34

CdGa₂Se₄, pressure-induced phase transitions, 160, 205

Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, 161. 23

CsBSe₃, synthesis, crystal structure, and properties, 157, 206

CsGd₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299

CsLa₂CuSe₄, synthesis, structure, and physical properties, **158**, 299

CsSm₂CuSe₄, synthesis, structure, and physical properties, **158**, 299

CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299

CuSe and Cu_3Se_2 thin films, chemical deposition and characterization, 158, 49

N,N'-dimethylpiperazinium(2+) hydrogen selenite, preparation, crystal structure, vibrational spectra, and thermal behavior, **161**, 312

 $Gd_4TiSe_4O_4$, crystal structure and magnetic properties, 162, 182

K₂In₁₂Se₁₉, microdomains and diffuse scattering in, **161**, 385

 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, syntheses and crystal structures, 157, 289

 $(ND_4)_4D_2(SeO_4)_3$ and $(NH_4)_4H_2(SeO_4)_3$, crystal structure below 180 K, **160.** 189

Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction, **161**, 266

 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, **162**, 122

RbBSe₃, synthesis, crystal structure, and properties, 157, 206

TPnSe (T = Ni,Pd; Pn = P,As,Sb), preparation and crystal structure, **162**, 69

SrBi₂Se₄, synthesis and characterization, 156, 230

TlBSe₃, synthesis, crystal structure, and properties, 157, 206

 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198

Semiconductors

BaCu₂Te₂, structure and properties, **156**, 44

CdGa₂Se₄, pressure-induced phase transitions, **160**, 205

Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, **161**, 129

 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294

Silicon

Al-Li-Si system

Li₈Al₃Si₅-type structure and ternary solid-state phase equilibria, 156, 500

polythermal equilibria, experimental study and thermodynamic calculation, **156**, 506

BaCu₂(Si_{1-x}Ge_x)₂O₇, spin-1/2 quantum antiferromagnetic chains with tunable superexchange interactions in, **156**, 101

α-Co₂SiO₄-α-Ni₂SiO₄, vibrational spectroscopic study, **157**, 102

Cs₂CoSiO₄ and Cs₅CoSiO₆, synthesis, crystal structure, and properties, 162, 204

Cu_{5.52(8)}Si_{1.04(8)}□_{1.44}Fe₄Sn₁₂S₃₂ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327

 $Dy_3Si_2C_2$, subcell and superstructure, 156, 1

electrochemically cycled SnO_2 -lithium thin-film battery doped with, microstructural evolution, 160, 388

 $K_2 Ti Si_6 O_{15}$ with corrugated $[Si_6 O_{15}]_{\infty \infty}$ layers, synthesis and crystal structure, 156, 135

Pr₃Si₂C₂, subcell structure, 156, 1

Rb₂CdSiO₄, synthesis and crystal structure, 162, 214

Rh/SiO₂ sol–gel, properties of, effects of pH and metal loading, **158**, 154 $ScB_{19+x}Si_y$, floating zone crystal growth and structure analysis, **160**, 394 A_5Si_3 (A = Ca,Sr,Ba,Eu) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, **159**, 149

Si-Al nanocomposite with hexagonal structure, synthesis and characterization, **158**, 134

SiC, Hi-Nicalon fibers, multilayered BN coating deposition onto, via continuous LPCVD treatment, 162, 358

SiO₂

amorphous to crystalline phase transition, effects of alkali ions, 161, 373

fused, kinetics of reduction in hydrogen, flow and diffusion analysis, **160**, 247

sol-gel glass doped with Ni²⁺ and Mn²⁺, defects and photoluminescence, **160**, 272

xerogels, modification by fluoride ion-catalyzed treatment, **162**, 371 REE₂Si₂O₇ (REE = Nd,Sm,Eu,Gd), type K structure at high pressure, **161**, 166

Si-Ti and Si-Zr nanocomposites with lamellar structure, synthesis and characterization, **158**, 134

Tb₃Si₂C₂, subcell and superstructure, **156**, 1

 $U_3M_2Si_3$ (M = Al,Ga), magnetotransport and heat capacity, **158**, 227 $Y_3Si_2C_2$, subcell and superstructure, **156**, 1

ZrO₂-SiO₂, crystallization in, **158**, 349

Silver

Ag⁺, low coordination in chalcogenide environments, **160**, 212

 $AgCuO_2$, synthesis, crystal structure, and structural relationships with CuO and $Ag^IAg^{III}O_2$, **162**, 220

Ag₂Cu₂O₃, high-pressure synthesis and electrochemistry, **158**, 82

Ag₂FeMn₂(PO₄)₃ with alluaudite-like structure, neutron diffraction, Mössbauer spectrum, and magnetic behavior, **159**, 46

REAgMg (RE = La,Ce,Nd,Eu,Gd,Tb,Ho,Tm,Yb), synthesis and crystal structures, 161, 67

AgS₂ film, epitaxial growth on cleaved surface of MgO(001), **157**, 86 Ag₂Se nanoparticles, synthesis by laser–solid–liquid ablation, **160**, 430

Ag₂Te and Ag₇Te₄ nanocrystals, sonochemical synthesis, **158**, 260 hingry metal chalcogenide panocrystals, synthesis in alkaline aqueous

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184

 $\text{CsGd}_2\text{Ag}_3\text{Se}_5$, synthesis, structure, and physical properties, 158, 299

CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, **158**, 299 Size effect

boehmite crystallite, relationship to bond length, 159, 32

V₂O₅ nanocrystal preparation and properties, **159**, 181

Small-angle X-ray scattering

alkali ion effects on amorphous to crystalline phase transition of silica, **161.** 373

Small polaron

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215

Sodiur

Bi_{2.5}Na_{0.5}Nb₂O₉, crystal structure, powder neutron diffraction study, **157**, 160

effects on amorphous to crystalline phase transition of silica, **161**, 373 hydrogen coinserted hydrated sodium molybdenum bronzes, direct synthesis and characterization, **159**, 87

ionic conductivity in Nasicon structures, modeling, 156, 154

Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176

NaCa₂GeO₄F, synthesis and structure, 160, 33

Na_{1.1}Ca_{1.8}Mn₉O₁₈, synthesis by calcium insertion in Na₄Mn₉O₁₈ tunnel structure, **162**, 34

Na₄Cd₂(C₂O₄)₄·4H₂O, synthesis, structure, and properties, **162**, 150 Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195

Na₃Fe(PO₄)₂, glaserite-like structure, 160, 377

Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129

NaHPO₃F·2.5H₂O, synthesis and crystal structure, **156**, 415

Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213

Na/K alloy for reduction of monoalkyl aluminum(III) compounds, 162, 225

NaLa₆(Os)I₁₂, synthesis and structure, 161, 161

NaLa₂Ti₂TaO₁₀·xH₂O (x = 2,0.9,0) layered perovskites, structure, **158**, 290

Na₂MgInF₇, crystal structure, **159**, 234

Na_xMnO_{2+δ}, synthesis by reduction of aqueous sodium permanganate with sodium iodide, **156**, 331

Na₄Mn₉O₁₈ tunnel structure, calcium insertion in, 162, 34

 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (*Ln* = Pr, x = 0.66; Ln =Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294

Na₂NbF₆-(Nb₆Br₄F₁₁), synthesis and crystal structure, **158**, 327

Na₂PO₃F·10H₂O, synthesis and crystal structure, **156**, 415

 $Na_2M_3Sb_4$ (M = Sr,Ba), synthesis, structure, and properties, 162, 327

NaSmP₂S₆, structure modification, **160**, 195

NaYbP₂S₆, structure modification, **160**, 195

NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8 Sodium iodide

reduction of aqueous sodium permanganate, in synthesis of $Na_xMnO_{2+\delta}$, 156, 331

Sodium permanganate

aqueous, reduction with sodium iodide, in synthesis of $Na_xMnO_{2+\delta}$, 156, 331

Sol-gel synthesis

Bi₂Ru₂O₇ pyrochlore oxide in alkaline medium, 161, 379

 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors, **161**, 355

Li-Fe-Mn-O spinel solid solutions, 161, 152

rhodamine B in lactone form, 156, 325

Rh/SiO₂ prepared by, properties of, effects of pH and metal loading, **158**, 154

TiO₂ nanocrystalline ultrafine powder, **156**, 220

Solid solutions

 $\text{Bi}_{1-x}\text{Cr}_x\text{O}_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solution with 3D incommensurate modulation, **156**, 168

Bi_{4.86}Li_{1.14}O₉-related, characterization, 162, 10

Bi_{2-x}Sb_xMoO₆: structure refinement of Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72

 $Ce_{1-x}Bi_xVO_4$ and $Ce_{1-x}M_xVO_{4-0.5x}$ (M = Pb,Sr,Ca), Raman and IR spectroscopy, **158**, 254

β-Ga₂O₃-In₂O₃, with composition gradients, formation by laser impact, 157, 94

In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13

La-Ca-Mn-O system, phase equilibrium, 156, 237

LaOX (X = Cl,Br), synthesis and lattice parameters, 160, 469

Li-Fe-Mn-O spinels, preparation and characterization, 161, 152

 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\le x \le 0.166$), synthesis and crystal structure, **160**, 251

 $Mn_xCo_{1-x}(O_3PC_6H_5) \cdot H_2O$, structure and magnetic properties, 159,

 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122 nonstoichiometric rutile-type, in $Fe^{II}F_2$ - $Fe^{III}OF$ system, 161, 31

 $PbZr_xTi_{1-x}O_3$, enthalpies of formation, **161**, 402

SbSb_x M_{1-x} O₄ ($M = \text{Nb}^{\text{V}}$,Ta^V), behavior and second-harmonic generating properties, **161**, 57

 ${\rm Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437

SrTiO₃-SrZrO₃, crystal structure and phase transitions, 156, 255

 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, **156**, 452

 $W_x Mo_{(1-x)} S_2$, lamellar, two cation disulfide layers in, **160**, 147

Solvothermal synthesis

fluoroaluminophosphate chain AlPO-CJ10, 161, 259

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), **159**,

 $Ni(HP_2O_7)F \cdot C_2N_2H_{10}$ with chain structure, **158**, 68

noncluster vanadium(IV) coordination polymers, 160, 118

Sonochemical synthesis

Ag₂Te and Ag₇Te₄ nanocrystals, **158**, 260

Space group

Ca_{0.5}Sr_{0.5}TiO₃ perovskite, 160, 8

Specific heat

Ba₃NdRu₂O₉ 6H-perovskite, 161, 113

κ-(BETS)₂FeCl₄, **159**, 407

 $LnCrO_4$ (Ln = Nd,Sm,Dy), **160**, 362

EuPd₃S₄, 157, 117

 ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, 173 Ln_3RuO_7 (Ln = Sm,Eu), 158, 245

Spectroscopy

Cs₂CoSiO₄ and Cs₅CoSiO₆, 162, 204

Spin crossover

cobaltites(III) and cobaltites(IV) with perovskite or related structure, 162, 282

1,3,5-trithia-2,4,6-triazapentalenyl crystals, comparison with room-temperature, magnetic bistability, **159**, 451

Spin dimer analysis

anisotropic spin exchange interaction in CuM_2O_6 (M = Sb,V,Nb), 156, 110

antiferromagnetic spin exchange interactions of magnetic solids with several unpaired electrons per spin site, **156**, 464

Spinels

cation-deficient, with formula close to Li₂Mn₄O₉, topotactic reactions, structure, and Li intercalation, **160**, 108

CdCr_{2-x}Ga_xSe₄, metal ion distribution and magnetic properties, **158**, 34 Li-Fe-Mn-O solid solutions, preparation and characterization, **161**, 152 LiMn₂O₄ cathode prepared by tartaric acid gel process, NMR and FTIR studies, **160**, 368

Spin exchange interactions

anisotropic, in CuM_2O_6 (M = Sb, V, Nb), spin dimer analysis, **156**, 110

antiferromagnetic, magnetic solids with several unpaired electrons per spin site, spin dimer analysis, **156**, 464

Spin glasses

La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO₃, electronic and magnetic properties due to Co ions, **159**, 215

 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76

 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce, Pr), formation, **156**, 452

 $TICr_5S_{8-y}Se_y$ (y = 1-7), behavior mediated by nonmagnetic sublattice, **158**, 198

Spin ladder compounds

 $La_8Cu_7O_{19}$, crystal growth, structure, and transport properties, **156**, 422 Spin states

cobaltites(III) and cobaltites(IV) with perovskite or related structure, **162**, 282

tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine, -methyl, and -borane, ground states, 159, 428

Spin state transition

in LaCoO₃ depending on temperature or Sr doping, XAS study, **158**, 208 photo- and dehydration-induced charge transfer processes with, on CoFe(CN)₅NH₃·6H₂O, **159**, 336

Stereochemistry

Bi_{1.1}Sb_{0.9}MoO₆, **159**, 72

Strain analysis

 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb, Ta) pyrochlores, **156**, 207 Strontium

Bi₂Sr₂CaCu₂O_y, mercuric bromide-intercalated single crystal, polarized X-ray absorption spectroscopy, **160**, 39

 $Bi_2Sr_{1.6}La_{0.4}CuO_{6.33-x}F_{2+x}$, suppression of modulations in, **156**, 445 $Ca_{2-x}Sr_xRuO_4$, synthesis and single-crystal growth, **156**, 26

Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, **160**, 8

Ce_{1-x}Sr_xVO_{4-0.5x} solid solutions, Raman and IR spectroscopy, **158**, 254

(Cu_{0.5}Cr_{0.5})Sr₂CuO_x, order-disorder transition under high-pressure and high-temperature conditions, 161, 348

doping of LaCoO₃, associated spin state transition, XAS study, **158**, 208 Eu₂O₃–SrO–CuO system, compounds and phase relations, **156**, 247

 ${\rm Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}}$ superconductors grown by sol-gel and sealed quartz tube synthesis, structural and superconducting properties, **161**, 355

La_{0.6}(Sr_{0.4-x}Ba_x)MnO₃, internal chemical pressure effect and magnetic properties, **156**, 117

(La,Sr)(Co,Fe)O₃, thermal expansion in, computer simulation, **156**, 394 La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-δ}, oxidation states of Cu and Ru in, determination by XANES measurements, **156**, 194

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, electronic and magnetic properties due to Co ions, **159**, 215

 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143

Na₂Sr₃Sb₄, synthesis, structure, and properties, **162**, 327

 $Pr_{0.7-x\square}Sr_{0.3}MnO_3$ perovskites, physical properties, effect of Pr deficiency, **156**, 68

 Sr_5Tt_3 (Tt = Si,Ge,Sn) compounds with Cr_5B_3 -like structures, hydrogen impurity effects in, 159, 149

Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106

SrBi₂Se₄, synthesis and characterization, 156, 230

SrBi₂Ta₂O₉ ferroelectric oxides, cation disorder in, 160, 174

 $Sr_{1.19}Ca_{0.73}Cu_2O_4$, structure simulation using interatomic potentials, 158, 162

(Sr_{1-x}Ca_x)TiO₃ with composition (x), evolution of crystallographic phases in, **162**, 20

SrCoO₃, electronic structure, **162**, 282

 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, synthesis, structure, and physical properties, **157**, 76

SrCuO₃, structure simulation using interatomic potentials, 158, 162

 $MSr_2QCu_2O_{6+z}$ (M = Cu,Hg,Tl/Pb; Q = rare earth,Ca; z = 0-1), structure-property relationships, modeling by multivariate analysis methods, **162**, 1

 ${\rm Sr}_3{\rm Fe}_{2-x}{\rm Co}_x{\rm O}_{7-\delta}$ (0 $\leq x \leq$ 0.8), synthesis, crystal chemistry, and electrical and magnetic properties, **158**, 307

SrFeO_v, electrical properties at high temperature, 158, 320

Sr₂Fe₂O₅, crystal and magnetic structures at elevated temperatures, 156, 292

 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, synthesis and characterization, 162. 113

Sr₃Ga₂O₆, crystal structure, **160**, 421

Sr₁₀Ga₆O₁₉, crystal structure, 160, 421

Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, structure determination from powder Xray and neutron diffraction studies, **157**, 283

SrHfO₃, hyperfine interaction at, temperature dependence, 159, 1

 $SrIn_2O_4$ red-emitting phosphors activated by praseodymium, luminescent properties, **156**, 84

 $SrLaFeVO_6$ double-perovskite oxide, synthesis, structure, and properties, 162, 250

 $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19

Sr₂MnGaO_{5+δ}, synthesis, crystal structure, and magnetic properties, 160, 353

Sr[N(CN)₂]₂, synthesis, vibrational spectroscopy, and crystal structure, 157, 241

 Sr_xBO_3 (B = Co,Ni), magnetic properties, structural and electronic factors governing, **160**, 239

 $A'[Sr_2B_3O_{10}]$ (A' = Rb,Cs; B = Nb,Ta), Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**, 279

 $Sr_7Re_4O_{19}$, preparation, crystal structure, magnetic properties, and relationship to $Ba_7Ir_6O_{19}$ structure, **160**, 45

Sr₂ScBiO₆, synthesis and crystal structure, **162**, 142

 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437

SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, **156**, 255

 $Sr_{9/8}TiS_3,\ Sr_{8/7}TiS_3,\ and\ Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3,\ structures\ and\ physical\ properties, effects of metal–metal sigma bonding, <math display="inline">162,\ 103$

 $Sr[(UO_2)_2(IO_3)_2O_2](H_2O)$, formation, effect of cation, **161**, 416 $TISr_2CoO_5$, electronic structure, **162**, 282

Structure, see also Band structure; Crystal structure; Defect structure; Electronic structure; Magnetic structure; Superstructure

alkali titanium oxides, pseudo-one-dimensional periodic domain boundary structures, **162**, 128

 AM_2B_2C (A = Lu,La,Th; M = Ni,Pd), **160**, 93

 $\text{Bi}_{1-x}\text{Cr}_x\text{O}_{1.5+1.5x}$ (0.05 $\leq x \leq$ 0.15), high-temperature solid solution with 3D incommensurate modulation, **156**, 168

Ca₄Nb₂O₉-CaTiO₃ microstructure, 160, 257

in cation-deficient spinels with formula close to Li₂Mn₄O₉, **160**, 108

Cd_{5-\(\eta/2\)}(PO₄)₃Br_{1-\(\eta\)}, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88

 $Cd_{5-\eta/2}(VO_4)_3I_{1-\eta}$, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88

CeIrIn₅ and CeRhIn₅ heavy fermion materials, intergrowth structure, 158, 25

 $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, 159, 198

CoFe(CN)₅NH₃·6H₂O, effects of dehydration and photo-irradiation, **159**, 336

 $Cp_2Mo(dmit)$ with Br^- or BF_4^- , 159, 413

 Cr_5B_3 -like, A_5Tt_3 (A = Ca,Sr,Ba,Eu; Tt = Si,Ge,Sn) compounds with, hydrogen impurity effects in, **159**, 149

CuSe and Cu₃Se₂ thin films, 158, 49

[M(dicyanamide)₂pyrazine] (M = Mn, Fe, Co, Ni, Zn), isomerism, 159, 352

Dy₃Si₂C₂, subcell and superstructure, 156, 1

electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388

and energy, changes in 2,2-dinitropropane-1,3-diol molecules and crystals, induction by temperature variations, **157**, 296

In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition, TEM study, 158, 119

 $K_{0.2} Co_{1.4} [Fe(CN)_6] \cdot 7H_2O,$ microstructural changes induced by thermal treatment, **156**, 400

LiAlB₂O₅, ab initio determination, **156**, 181

 $\text{Li}_{1-z-x}\text{Ni}_{1+z}\text{O}_2$, neutron diffraction study, 158, 187

LiVO₃, disorder in, neutron powder diffraction study from 340 to 890 K, 156, 379

local, in heat-treated oxyhydroxyapatite microcrystals, solid state NMR, XRD, and IR studies, 160, 460

 $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, **159**, 362

 $[Mn(L)]_3[Cr(CN)_6]_2 \cdot nH_2O$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network, **159**, 328

Ni_{1+x}Se₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction studies, **161**, 266

 $Ni_{6\pm x}Se_5$, incommensurate interface modulated structure, 162, 122

 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191

Ni_{1+x}Te₂ CdI₂/NiAs type solid solution phase, electron and X-ray diffraction studies, **161**, 266

 A_xBO_3 (A = Ca,Sr,Ba; B = Co,Ni), role in magnetic properties, 160,

 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M=Nb,Ta) pyrochlores, X-ray structure refinements, **156**, 207

products of high-temperature reactions of metal triangles, effects of counterion, ligand, and metal, **159**, 321

Pr₃Si₂C₂, subcell structure, **156**, 1

pyrochlore $A_2B_2O_7$ transformation to fluorite structure AO_2 , Raman spectroscopy and defect chemistry modeling, **160**, 25

related aspects solid-state polycondensation reaction in alkali 4halogenomethylbenzoates, **156**, 61

superconductive cuprates, relationship to properties, modeling by multivariate analysis methods, 162, 1

Tb₃Si₂C₂, subcell and superstructure, 156, 1

TTB-type, Ba₄CeNb₁₀O₃₀ with, crystal structure, 157, 1

 $W_x Mo_{(1-x)}S_2$, lamellar solid solutions, two cation disulfide layers in, 160, 147

Y₃Si₂C₂, subcell and superstructure, 156, 1

ZrP₂O₇, 3-D incommensurately modulated cubic phase, **157**, 186 Subcell structure

 $Dy_3Si_2C_2$, $Pr_3Si_2C_2$, $Tb_3Si_2C_2$, and $Y_3Si_2C_2$, 156, 1 Sulfur

 AgS_2 film, epitaxial growth on cleaved surface of MgO(001), 157, 86 $BaKCu_3MS_4$ (M=Mn,Co,Ni), electrical and magnetic properties, 157, 144

BaNd₂MnS₅, crystal structure and magnetic properties, 159, 163

 $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd; M = Co, Zn), crystal structure and magnetic properties, **159**, 163

 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, **161**, 184

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions, **159**, 385

Co(II) coordination polymers $\{[CoBr_2(btd)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, synthesis, characterization, crystal structure, and magnetic properties, **159**, 371

Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, **159**, 413

CrS₂ layers, and MnF₅ chains, compounds consisting of, spin exchange parameters, 156, 464

CuInS₂ nanorods, hydrothermal synthesis and characterization, 161, 179

Cu_{5.52(8)}Si_{1.04(8)}□_{1.44}Fe₄Sn₁₂S₃₂ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327

Eu₂GeS₄, structural evidence for ferroelectricity, 158, 343

EuPd₃S₄, Mössbauer effects and magnetic properties, 157, 117

FeSb₂S₄, crystal structure, Mössbauer spectra, thermal expansion, and phase transition, **162**, 79

 $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and 25°C, 156, 264

K₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, 162, 195

KSmP₂S₇, structure modification, 160, 195

LiKSO₄, thermal analysis and X-ray diffraction studies of phase transitions, **148**, 316; comments, **156**, 251, 253

Li₂Mn₂(SO₄)₃, crystal structure and magnetic properties, **158**, 148 MoS₂, hydrothermal synthesis and pressure-related crystallization, **159**,

Na₃Cr₂P₃S₁₂ one-dimensional compounds, synthesis, structure, and magnetic properties, **162**, 195

Na₉Gd₅Sb₈S₂₆, synthesis and crystal structure, 161, 129

NaSmP₂S₆, structure modification, 160, 195

NaYbP₂S₆, structure modification, 160, 195

PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50

RbEr₂Cu₃S₅, synthesis, structure, and physical properties, 158, 299

Rb₂Gd₄Cu₄S₉, synthesis, structure, and physical properties, 158, 299

RbNd₂CuS₄, synthesis, structure, and physical properties, **158**, 299

 $Rb_{1.12}(NH_4)_{0.88}SO_4\cdot Te(OH)_6,$ thermal analysis and crystal structure at 435 K, 161, 1

RbSm₂CuS₄, synthesis, structure, and physical properties, **158**, 299 TPnS (T = Ni,Pd; Pn = P,As,Sb), preparation and crystal structure, **162**. 69

 $LnSbS_2Br_2$ (Ln = La,Ce), crystal and electronic structures and optical properties, **158**, 218

 $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, structures and physical properties, effects of metal-metal sigma bonding, **162**, 103

tin sulfide rod-like nanocrystals, preparation and morphology control via ethanol thermal route, **161**, 190

 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198

1,3,5-trithia-2,4,6-triazapentalenyl crystals, magnetic bistability at room temperature, comparison with spin crossover transitions, 159, 451

 V_5S_8 , magnetic properties, effects of metal-atom clustering, **160**, 287 $W_xMo_{(1-x)}S_2$ lamellar solid solution, two cation disulfide layers in, **160**, 147

 WS_2 nanotube formation via WO_{3-x} reduction, **162**, 300 Superconductivity

cuprates, structure-property relationships, modeling by multivariate analysis methods, **162**, 1

 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ grown by sol-gel and sealed quartz tube synthesis. **161**, 355

oxide, anionic charge order model, 158, 139

Superconductors

in AM_2B_2C (A = Lu, La, Th; M = Ni, Pd), T_c 's, 160, 93

ferrite-superconductor multiphase materials, thermally treated, chemical degradation, **160**, 332

Sm-123 high-temperature superconductor doped with Al, structure of Al defect in, electron density study, **161**, 396

Superexchange interactions

tunable, spin-1/2 quantum antiferromagnetic chains with, in $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101

Superstructure

Bi_{3.5}V_{1.2}O_{8.25}, **161**, 410

Ca₃Ni₈In₄, ordered noncentrosymmetric variant of BaLi₄ type, **160**, 415 CdTeMoO₆ and CoTeMoO₆: fluorite-type structure with cation and anion deficiencies (■CoTeMo)(□₂O₆), **160**, 401

Dy₃Si₂C₂, 156, 1

γ-GeP₂O₇, **156**, 213

mixed α/β , in NASICON ionic conductors, **156**, 305

 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135

RbUSb_{0.33}Te₆: periodic modulations of infinite $[Te_x]^{n-}$ chains, **161**, 17 Tb₃Si₂C₂, **156**, 1

 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355

Y₃Si₂C₂, **156**, 1

Synchrotron powder X-ray diffraction

BaFeO_{2.8- δ} prepared from oxidative thermal decomposition of BaFe[(CN)₅NO]·3H₂O, **160**, 17

 $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, 156, 32

SrTiO₃-SrZrO₃ solid solution, 156, 255

structural aspects of solid-state polycondensation reaction in alkali 4-halogenomethylbenzoates, **156**, 61

YCuO_{2+x} delafossite: fine structure determination, **156**, 428

Synthesis, see also Hydrothermal synthesis; Sol-gel synthesis; Solvothermal synthesis

AgCuO₂, **162**, 220

Ag₂Cu₂O₃ at high pressure, **158**, 82

REAgMg (RE = La, Ce, Nd, Eu, Gd, Tb, Ho, Tm, Yb), **161**, 67

Ag₂Se nanoparticles by laser-solid-liquid ablation, **160**, 430

Ag₂Te and Ag₇Te₄ nanocrystals, **158**, 260

Al(CN)₃, **159**, 244

Al-Ti nanocomposite with lamellar structure, 158, 134

Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, 158, 134

Ba₅Co₅ClO₁₃, **158**, 175

 $BaCu_2(Si_{1-x}Ge_x)_2O_7$, **156**, 101

 $ReB_{22}C_2N$ (Re = Y, Ho, Er, Tm, Lu), **159**, 174

Be(CN)2, 159, 244

Bi_{1-x}Cr_xO_{1.5+1.5x} (0.05 \leq x \leq 0.15) high-temperature solid solution with 3D incommensurate modulation, **156**, 168

BiMn₆PO₁₂, **157**, 123

binary metal chalcogenide nanocrystals in alkaline aqueous solution, 161, 184

 $Ca_3Co_{1+x}Mn_{1-x}O_6$ quasi-one-dimensional oxides, **160**, 293

 $[Ca_2CoO_3][CoO_2]_{1.62}$ misfit layer compounds, 160, 322

Ca₃CuMnO₆ quasi-one-dimensional oxides, 160, 293

 $Ca_2MnGaO_{5+\delta}$, 158, 100

Ca₂NF, **160**, 134

 $Ca_{2-x}Sr_xRuO_4$, **156**, 26

 $ACa_9(VO_4)_7$ (A = Bi,rare earth), 157, 255

CdBa₃(HPO₄)₂(H₂PO₄)₂, 161, 97

 $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2]$ and $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, 157, 233

 $[(C_{12}H_8N_2)_3Fe^{II}]_2[Fe^{II}Mo_1^V_2(H_2PO_4)_6(PO_4)_2(OH)_6O_{24}]$ in presence of Fe(II)(1,10-phenanthroline)₃ complex, **159**, 209

C₅H₁₂NPO₄H₂, **161**, 307

 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, **162**, 168 $Co_3[BPO_7]$, **156**, 281

Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371

NaYbP₂S₆, **160**, 195 $Co(H_2O)_2O_2CC_6H_4CO_2$, **159**, 343 Nb₆Br₈F₇, **158**, 327 Co₂(OH₂)O₂CC₆H₄CO₂, 159, 343 CsBSe₃, 157, 206 $Nb_{28}Ni_{33.5}Sb_{12.5}$, **160**, 450 Cs₂CoSiO₄ and Cs₅CoSiO₆, 162, 204 (NC₅H₁₂)₂·Zn₃(HPO₃)₄ low-density framework built up from fully con-CsGd₂Ag₃Se₅, 158, 299 nected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, Cs₃Gd₄Cu₅Te₁₀, **160**, 409 CsLa₂CuSe₄, 158, 299 $M[N(CN)_2]_2$ (M = Mg,Ca,Sr,Ba), 157, 241 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, Cs₃P₆N₁₁ at high pressure and temperature, **156**, 390 CsSm₂CuSe₄, 158, 299 **156,** 370 CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299 $[Nd(XeF_2)_n](AsF_6)_3$ (n = 3,2.5), **162**, 243 $[Cu_{12}Ln_6(\mu_3-OH)_{24}(C_5H_5NCH_2CO_2)_{12}(H_2O)_{18}(\mu_9-NO_3)](PF_6)_{10}$ NH₄(SbO)₃(CH₃PO₃)₂ nanotubes, **162**, 347 $(NO_3)_7 \cdot 12H_2O (Ln^{III} = Sm^{III}, Gd^{III}), 161, 214$ ABO_3 (A = La-Nd; B = Dy-Lu) interlanthanide perovskites, 157, [$M(\text{dicyanamide})_2$ pyrazine] (M = Mn,Fe,Co,Ni,Zn), 159, 352 N,N'-dimethylpiperazinium(2 +) hydrogen selenite, **161**, 312 $A'[A_2B_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba; B = Nb,Ta) Dion-Jacobson-type $M^{II}M^{IV}F_6$ ($M^{II} = Ni,Pd,Cu; M^{IV} = Pd,Pt,Sn$), **162**, 333 layered perovskites, 158, 279 (Fe@Au) nanoparticles, 159, 26 PbVOP₂O₇ with intersecting tunnel structure, **162**, 354 Gd₃Cu₂Te₇, 159, 186 Pd nanosized clusters deposited on titania-modified mesoporous germanium pyrophosphates, 156, 213 MCM-41, 162, 138 β -HfNCl under high pressure, 159, 80 polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, [Hg₆P₄](TiCl₆)Cl, 160, 88 **159.** 308 $Hg_{0.75}Re_{0.25}Ba_{2-x}Sr_xCa_2Cu_3O_{8+\delta}$ superconductors grown by sol-gel polyoxovanadates from aqueous solution, 162, 315 RbBSe₃, 157, 206 and sealed quartz tubes, 161, 355 hydrogen coinserted hydrated sodium and potassium molybdenum Rb₂CdSiO₄, 162, 214 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), 160, 409 bronzes, 159, 87 $In(Fe_{1-x}Ti_x)O_{3+x/2}$, orthorhombic phase with $0.50 \le x \le 0.69$ and RbEr₂Cu₃S₅, **158**, 299 Rb₂Gd₄Cu₄S₉, 158, 299 monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, 157, 13 K₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 RbNd₂CuS₄, 158, 299 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), 160, 409 Rb₃P₆N₁₁ at high pressure and temperature, **156**, 390 KSmP₂S₇, 160, 195 RbSm₂CuS₄, 158, 299 $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy) Ruddlesden-Popper phases by Re₃O₁₀, **160**, 317 $R_3 Ru_2 C_5$ (R = Y,Gd-Er), **160,** 77 ion exchange of HLnTiO₄, 161, 225 Sb₂O(CH₃PO₃)₂ with layered structure, 162, 347 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, 156, 135 ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, **162**, 250 Si-Al nanocomposite with hexagonal structure, 158, 134 LaMn_{1-x}Li_xO₃ perovskites, 159, 68 Si-Ti nanocomposite with lamellar structure, 158, 134 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, 157, 289 Si-Zr nanocomposite with lamellar structure, 158, 134 Li-M-X systems (M = V,Nb,Ta; X = P,As), 156, 37 α -Sn(HPO₄)₂·H₂O, **159**, 130 $LiCo_{1-x}Fe_xO_2$ system, **156**, 470 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, 161, linear-chain aluminum phosphates by reaction of amine phosphates with Al3+ ions, 156, 185 $Sn_{1+x}Nb_2O_{6+x}$ (x = 0.0,0.5,1.0), **156**, 349 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$ SrBi₂Se₄, 156, 230 Mg(CN)₂, 159, 244 $Sr_2CoSbO_{6-\delta}$ and $Sr_3CoSb_2O_9$ perovskites, 157, 76 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251 $Sr_3Fe_{2-x}Co_xO_{7-\delta}$ (0 $\leq x \leq$ 0.8), **158**, 307 mixed-valence compounds, 159, 51 $SrFe_2(PO_4)_2$ and $Sr_9Fe_{1.5}(PO_4)_7$, **162**, 113 $(Sr_{1-x}La_{1+x})Zn_{1-x}O_{3.5-x/2}$ (0.01 $\leq x \leq$ 0.03), **159**, 19 α-MnO₂, open tunnel oxide precipitated by ozone oxidation, 159, 94; erratum, 160, 292 $Sr_2MnGaO_{5+\delta}$, **160**, 353 MnO₂·0.22H₂O and MnO₂·0.70H₂O, from monoclinic-type LiMnO₂, Sr₇Re₄O₁₉, 160, 45 160, 69 Sr₂ScBiO₆, **162**, 142 molecule-based magnets by charge-transfer salt approach, 159, 420 $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, **162**, 103 Mo-Ni-P ternary phases, 160, 156 Th₃Co₃Sb₄, **162**, 158 $A_x \text{Mo}_v \text{W}_{1-v} \text{O}_3$ (A = K,Ce) intergrowth tungsten bronzes, 162, 341 tin sulfide rod-like nanocrystals via ethanol thermal route, 161, 190 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb),**162**, 90TiO₂ nanocrystalline anatase, 158, 180 NaCa₂GeO₄F, 160, 33 TIBSe₃, 157, 206 TlITlIII(CN)4, 159, 244 Na_{1.1}Ca_{1.8}Mn₉O₁₈, **162**, 34 TPnCh (T = Ni,Pd; Pn = P,As,Sb; Ch = S,Se,Te), 162, 69Na₃Cr₂P₃S₁₂ one-dimensional compounds, **162**, 195 Na₃Fe(PO₄)₂ with glaserite-like structure, **160**, 377 U₂Cu_{0.78}Te₆, **159**, 186 Na₉Gd₅Sb₈S₂₆, **161**, 129 VO₂ nanopowders, 156, 274 NaHPO₃F · 2.5H₂O, **156**, 415 $YBaCo_2O_{5+x}$ (0.00 $\le x \le 0.52$), **156**, 355 NaLa₆(Os)I₁₂, **161**, 161 Yb₅In₂Sb₆ Zintl phase with narrow band gap, 155, 55; erratum, 161, $Na_xMnO_{2+\delta}$ by reduction of aqueous sodium permanganate with 177 sodium iodide, 156, 331 yttria-stabilized zirconia nanoparticles, by molecular decomposition Na₂NbF₆-(Nb₆Br₄F₁₁), **158**, 327 process, 157, 149 Na₂PO₃F·10H₂O, **156**, 415 TT'_2Zn_{20} (T = Zr, Hf, Nb; T' = Mn, Fe, Ru, Co, Rh, Ni) with $CeCr_2Al_{20}$ type structure, **161**, 288 $Na_2M_3Sb_4$ (M = Sr,Ba), **162**, 327 NaSmP₂S₆, 160, 195 β -ZrNCl under high pressure, **159**, 80

Т

Tantalum

 $ABi_2Ta_2O_9$ (A = Ca,Sr,Ba) ferroelectric oxides, cation disorder in, 160,

Ca₂Ta₂O₇ doped with niobia, 5M and 7M polytypes, **161**, 274

 $MLa_2Ti_2TaO_{10}$ (M = Cs,Rb) layered perovskites, structure, 158, 290

Li-Ta-X systems (X = P,As), synthesis and crystal structure, **156**, 37

 $NaLa_2Ti_2TaO_{10} \cdot xH_2O$ (x = 2,0.9,0) layered perovskites, structure, **158.** 290

Pb₅Ta₁₀O₃₀, ferroelectric properties, effect of cationic substitutions, **157**, 261

Pb₂(Ta_{2-y}Pb_y)O_{7- δ} (0.0 < y < 0.8) pyrochlores, X-ray structure refinements and strain analysis, **156**, 207

 $SbSb_xTa_{1-x}O_4$, solid solution behavior and second-harmonic generating properties, **161**, 57

181Ta probes in SrHfO₃, hyperfine interaction at, temperature depen-

dence, **159**, 1 $Ln_3Ta_2N_6$ (Ln = La,Ce,Pr), synthesis, structure, and magnetic proper-

ties, **162**, 90 L-Ta₂O₅, and related structures, Moser's C-line, apparent multiplicity m', and modules, **160**, 62

 $A'[A_2Ta_3O_{10}]$ (A' = Rb,Cs; A = Sr,Ba) Dion-Jacobson-type layered perovskites, synthesis, structure, and electrical conductivity, **158**,

Tartaric acid gel process

 $LiMn_2O_4$ spinel cathode prepared by, NMR and FTIR studies, 160, 368

Tartrate

Li–Fe–tartrate gels (molar ratio Li/Fe $\leq 1/5$), thermal behavior, **160**, 100 Tellurium

Ag₂Te and Ag₇Te₄ nanocrystals, sonochemical synthesis, **158**, 260

BaCu₂Te₂, structure and physical properties, 156, 44

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution. 161. 184

Bi₂TeO₅, oxidation, thermoanalytical and optical microscopic studies, 161, 365

CdTeMoO₆ and CoTeMoO₆, X-ray and TEM studies: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo) (\square_2 O₆), **160**, 401

Cs₃Gd₄Cu₅Te₁₀, synthesis and structure, **160**, 409

Gd₃Cu₂Te₇, synthesis and structure, **159**, 186

IrTe₂, preparation under high pressure, theoretical study, 162, 63

 $K_3Ln_4Cu_5Te_{10}$ (Ln = Sm,Gd,Er), synthesis and structure, 160, 409

Ni_{1+x}Te₂ *CdI*₂/*NiAs* type solid solution phase, electron and X-ray diffraction, **161**, 266

 $Rb_3Ln_4Cu_5Te_{10}$ (Ln = Nd,Gd), synthesis and structure, **160**, 409

 $Rb_{1.12}(NH_4)_{0.88}SO_4 \cdot Te(OH)_6$, thermal analysis and crystal structure at 435 K, 161, 1

RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 TPnTe (T=Ni,Pd; Pn=P,As,Sb), preparation and crystal structure, **162**, 69

TlTe, electronic band structure, 157, 193

U₂Cu_{0.78}Te₆, synthesis and structure, **159**, 186

Temperature effects

Bi_{2-x}In_xSe₃ transport properties in single crystals, **160**, 474

2,2-dinitropropane-1,3-diol molecules and crystals: structure-energy changes, 157, 296

hyperfine interaction at ¹⁸¹Ta in SrHfO₃, **159**, 1

spin state transition in LaCoO3, XAS study, 158, 208

Sr_{1-x}Ba_xZrO₃ perovskites, high-resolution powder diffraction study, 161, 106

Temperature-programmed reduction

Mg-Fe-O and Mg-Fe-Al-O complex oxides, 161, 38

Terbium

CsTb₂Ag₃Se₅, synthesis, structure, and physical properties, 158, 299

TbAgMg, synthesis and crystal structures, 161, 67

 $TbCa_9(VO_4)_7$, synthesis and structure, 157, 255

Tb₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77

Tb₃Si₂C₂, subcell and superstructure, **156**, 1

Terephthalate

layered cobaltous terephthalate, synthesis, crystal structure, and magnetic properties, **159**, 343

Tetracyanoethylene

reaction with $\lceil Mn^{II}(t-Bu)_4$ salen \rceil_2 , 159, 403

Tetrahydrofuran

 $M_4\text{Cl}_8(\text{THF})_6$ (M = Mn,Fe,Co), compounds based on, structural and magnetic study, **159**, 281

Tetrapropylammonium ions

metathesis reactions with $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), 157, 324

Tetrapropylphosphonium ions

metathesis reactions with $[(Me_3Sn_3)_3M(CN)_6]$ (M = Co,Ir), 157, 324 Thallium

 β -Tl₂B₄O₇ containing three-dimensional borate anion, structure, **160**, 139

TIBSe₃, synthesis, crystal structure, and properties, 157, 206

 $TICr_5S_{8-y}Se_y$ (y = 1-7), spin-glass behavior mediated by nonmagnetic sublattice, **158**, 198

TIFeO₃, structural distortion and chemical bonding, comparison with $AFeO_3$ (A= rare earth), 161, 197

(Tl,Pb) A_2Q Cu $_2$ O $_{6+z}$ (A=Ba,Sr; Q= rare earth, Ca; z=0–1), structure–property relationships, modeling by multivariate analysis methods, **162**, 1

TlSr₂CoO₅, electronic structure, **162**, 282

TITe, electronic band structure, 157, 193

Tl^ITl^{III}(CN)₄, synthesis and structural properties, 159, 244

 $Tl_2[(UO_2)_3(IO_3)_4O_2]$, formation, effect of cation, **161**, 416

Thermal analysis

 $C_{10}H_{28}N_4P_4O_{12}\cdot 4H_2O$, **156**, 364

 $(C_2H_{10}N_2)Zr_2F_{10}\cdot H_2O \text{ and } (C_4H_{12}N_2)ZrF_6\cdot H_2O, \textbf{159,} \ 198$

 $Cu_x M_{1-x}(HCOO)_2 \cdot 2H_2O \ (M = Mn,Co,Ni,Cd), 157, 23$

(Hg₃)₂(HgO₂)(PO₄)₂ and (Hg₃)₃(PO₄)₄, **157**, 68

LiKSO₄, 148, 316; comments, 156, 251, 253

 $(NH_4)[Ce^{IV}F_2(PO_4)]$, 157, 180

Rb_{1.12}(NH₄)_{0.88}SO₄·Te(OH)₆, **161**, 1

ZrO₂ crystallization in sol-gel system, **158**, 349

Thermal conductivity

 $Bi_{2-x}In_xSe_3$ single crystals, **160**, 474

Yb₅In₂Sb₆ Zintl phase with narrow band gap, **155**, 55; erratum, **161**, 177

Thermal cycling

effect on $Pr_{0.5}Ca_{0.5}Mn_{0.99}Cr_{0.01}O_3$ resistivity under magnetic field, 160, 1

Thermal decomposition

calcium-deficient carbonated hydroxyapatite, 160, 340

 $[Eu_2(H_2O)_{12}Mo_8O_{27}]$: formation of $Eu_4Mo_7O_{27}$ and $Eu_6Mo_{10}O_{39}$, 161, 85

hydroxyapatite during plasma-spray procedure, 160, 460

oxidative, BaFe[(CN)₅NO] · 3H₂O, BaFeO_{2.8- δ} prepared from, ab initio structure solution, **160**, 17

Thermal expansion

FeSb₂S₄, **162**, 79

γ-GeP₂O₇, **156**, 213

La-based perovskites, computer simulations, 156, 394

negative, in orthorhombic NbOPO₄, 160, 230

 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x = 0.2-0.8), **156**, 437

Thermal properties

BaZnCl₄-II:Sm²⁺, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237

 κ -(BETS)₂FeX₄ (X = Cl,Br) with superconducting transitions, effect of halogen substitution, **159**, 407

boehmite, dependence on atom bond lengths and crystallite size, 161, 319

N,N'-dimethylpiperazinium(2+) hydrogen selenite, **161**, 312

Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, **158**, 94

Li-Fe-tartrate gels (molar ratio Li/Fe $\leq 1/5$), 160, 100

 Ln_3 RuO₇ (Ln =Sm,Eu), **158**, 245

Thermal stability

MgPd₂, MgPd₃, and Mg₃Pd₅, 159, 113

Thermal treatment

ferrite-superconductor multiphase materials, associated chemical degradation, 160, 332

 $K_{0.2}Co_{1.4}[Fe(CN)_6] \cdot 7H_2O$, associated microstructural changes, 156, 400

Thermodynamics

mechanical stability and resistance of microporous materials prepared by pyrolysis, **160**, 13

polythermal equilibria in Al-Li-Si system, 156, 506

Thermoelectric materials

SrBi₂Se₄, synthesis and characterization, 156, 230

Thermoelectric power

 $Yb_5In_2Sb_6$ Zintl phase with narrow band gap, 155, 55; erratum, 161, 177 Thermogravimetry

Bi₂TeO₅ oxidation, **161**, 365

LiKSO₄, 148, 316; comments, 156, 251, 253

 $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot 0.66\text{H}_2\text{O}, 162, 29$

 $Mg_{1-x}Cu_{2+x}O_3$ (0.130 $\leq x \leq$ 0.166), **160**, 251

Nd-Mn-O system: phase equilibrium at 1100°C, **158**, 236

Thermopower

LaMnO_{3+ δ}, **160**, 123

 $La_{0.9}Sr_{0.1}Fe_{1-x}Co_xO_3$, **159**, 215

SrFeO_y at high temperature, **158**, 320

Thin films

CuSe and Cu₃Se₂, chemical deposition and characterization, **158**, 49 In₂O₃–ZnO transparent conducting films made by pulsed laser deposition, structures and textures, TEM study, **158**, 119

 $La_{1-x}Sr_xMnO_{3+\delta}$ epitaxial films, excess oxygen in, 156, 143

molecularly doped polymer system, voltage-dependent luminescence properties, ${\bf 158},\,{\bf 242}$

PZT pyrochlore epitaxial films, support-promoted stabilization, **158**, 40 Thiocyanato-complex anions

charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with, 159, 385

Thiospinels

 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32},$ crystal structure, Mössbauer studies, and electrical properties, 161, 327

Thiourea

fluorocyclohexane/thiourea inclusion compounds, temperature-dependent structural properties and crystal twinning, **156**, 16

2-Thioxo-1,3-dithiole-4,5-dithiolate

Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413

Thorium

Th M_2B_2C (M = Ni,Pd), metal-metal distances, electron counts, and superconducting T_C 's, **160**, 93

Th₃Co₃Sb₄, crystal structure, electrical and magnetic properties, and bonding, **162**, 158

Th₂(PO₄)₂HPO₄·H₂O, Th(OH)PO₄, and Th₂O(PO₄)₂, hydrothermal synthesis and characterization, **159**, 139

Thulium

NH₄Tm₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358 TmAgMg, synthesis and crystal structures, **161**, 67

TmB₂₂C₂N, synthesis and crystal structure, 159, 174

ATmO₃ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, **157**, 173

Tilt transitions

 $(Sr_{1-x}Ca_x)TiO_3$, **162**, 20

Tin

binary metal chalcogenide nanocrystals, synthesis in alkaline aqueous solution, 161, 184

 $CsSn_2X_5$ compounds (X = Cl,Br), cluster orbital formation in, **160**, 382 $Cu_{5.52(8)}Si_{1.04(8)}\square_{1.44}Fe_4Sn_{12}S_{32}$ thiospinel, crystal structure, Mössbauer studies, and electrical properties, **161**, 327

electrochemically cycled Si-doped SnO₂-lithium thin-film battery, microstructural evolution, **160**, 388

[$(Me_3Sn_3)_3M(CN)_6$] (M = Co,Ir), metathesis reactions with tetrapropylammonium and -phosphonium ions, 157, 324

 $Ni_{1+x}Sn$ (0.35 < x < 0.45) NiAs/Ni₂In-type phase with incommensurate occupational ordering of Ni, **159**, 191

PbSnS₃ nanorods prepared via iodine transport hydrothermal method, characterization, **160**, 50

 $\begin{array}{ll} [(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O] & and \\ 2H_2O], \ crystal \ structures, \ 157, \ 324 \end{array} \\ \end{array}$

probe ions located on Cr_2O_3 microcrystal surface, impact of HF, Mössbauer study, 162, 293

 A_5 Sn₃ (A= Ca,Sr,Ba,Eu) compounds with Cr₅B₃-like structures, hydrogen impurity effects in, **159**, 149

 $M^{\rm II}{\rm SnF_6}$ ($M^{\rm II}={\rm Ni,Pd,Cu}$), preparation, magnetic properties, and pressure-induced transitions, 162, 333

 α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, **159**, 130

 $Sn_{10}In_{14}P_{22}I_8$ and $Sn_{14}In_{10}P_{21.2}I_8$ with clathrate I structure, synthesis and crystal and electronic structures, **161**, 233

 $\mathrm{Sn_{1+x}Nb_2O_{6+x}}(x=0.0,0.5,1.0)$, synthesis and characterization, **156**, 349 tin sulfide rod-like nanocrystals, preparation and morphology control via ethanol thermal route, **161**, 190

Ti₁₁(Sb,Sn)₈, structure and physical properties, **157**, 225

itanium

alkali titanium oxides, pseudo-one-dimensional periodic domain boundary structures, 162, 128

Al-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134

Al-Ti-Zr nanocomposite with hexagonal structure, synthesis and characterization, **158**, 134

Ca₄Nb₂O₉-CaTiO₃, phase equilibria and microstructures, **160**, 257

Ca_{0.5}Sr_{0.5}TiO₃ perovskite, space group and structure, **160**, 8

 $(Cr,Fe)_2Ti_{n-2}O_{2n-1}$ crystallographic shear structure compounds, stability, **161**, 45

 $\rm Fe_2O_3-Cr_2O_3-TiO_2,$ phase relations between 1000 and 1300°C, 161, 45

Gd₄TiSe₄O₄, crystal structure and magnetic properties, **162**, 182

[Hg₆P₄](TiCl₆)Cl, synthesis, structure, and properties, 160, 88

In(Fe_{1-x}Ti_x)O_{3+x/2}, orthorhombic phase with $0.50 \le x \le 0.69$ and monoclinic phase with $0.73 \le x \le 0.75$ at 1300° C in air, synthesis and crystal structures, **157**, 13

 $KLnTiO_4$ (Ln = La,Nd,Sm,Eu,Gd,Dy), Ruddlesden-Popper phases synthesized by ion exchange of $HLnTiO_4$, **161**, 225

 $K_2TiSi_6O_{15}$ with corrugated $[Si_6O_{15}]_{\infty\infty}$ layers, synthesis and crystal structure, **156**, 135

La₂₄Li₂₀Ti₅O₅₆, crystal structure: pseudo-close-packed columnar intergrowth structure, **162**, 379

 $La_4Ti_2O_4Se_5$ and $La_6Ti_3O_5Se_9$, syntheses and crystal structures, **157**,

 $M\text{La}_2\text{Ti}_2\text{TaO}_{10}$ (M = Cs,Rb) layered perovskites, structure, **158**, 290 Li₂FeTi(PO₄)₃, mixed α/β superstructures, **156**, 305

 $\text{Li}_{0.5}\text{Mn}_{0.5}\text{Ti}_{1.5}\text{Cr}_{0.5}(\text{PO}_4)_3$, structural and electrochemical study, 158, 169

NaLa₂Ti₂TaO₁₀·xH₂O (x = 2,0.9,0) layered perovskites, structure, 158, 290

 $Ln_{1.33}$ Na_xMn_xTi_{2-x}O₆ (Ln = Pr, x = 0.66; Ln = Nd, x = 0.66,0.55), conductivity and magnetic properties, **161**, 294

PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, **161**, 402

PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40

Si-Ti nanocomposite with lamellar structure, synthesis and characterization, 158, 134

(Sr_{1-x}Ca_x)TiO₃ with composition (x), evolution of crystallographic phases in, **162**, 20

 $Sr_{0.97}Ti_{1-x}Fe_xO_{3-\delta}$ (x=0.2–0.8), transport properties and thermal expansion, **156**, 437

SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, **156**, 255

 $Sr_{9/8}TiS_3$, $Sr_{8/7}TiS_3$, and $Sr_{8/7}[Ti_{6/7}Fe_{1/7}]S_3$, structures and physical properties, effects of metal-metal sigma bonding, **162**, 103

TiAl intermetallics, reaction with nitrogen plasma, 157, 339

TiC, formation by combution reaction during mechanical alloying, mechanism, 158, 268

[Ti₂Cl₉]⁻³, magnetic anisotropy, 159, 268

 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96

TiO₂, mesoporous MCM-41 modified by, nanosized Pd clusters on, synthesis, characterization, and photoactivity, **162**, 138

TiO2 nanocrystals

anatase, preparation, characterization, and spectral studies, **158**, 180 ultrafine powder, preparation, characterization, and low-temperature heat capacities, **156**, 220

 TiO_2/γ -Al₂O₃, NiO dispersion on, **157**, 274

Ti₆Pb_{4.8}, short Pb-Pb bonds in, **159**, 134

Ti₁₁(Sb,Sn)₈, structure and physical properties, 157, 225

 $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, 156, 452

Y₂TiO₅, Raman spectroscopy, **160**, 25

 $Y_2Ti_{2-y}Zr_yO_7$ pyrochlore, transformation to fluorite structure, 160, 25

ZrO₂-Gd₂O₃-TiO₂, phase relations at 1500°C, **160**, 302

Topotactic reactions

in cation-deficient spinels with formula close to ${\rm Li_2Mn_4O_9}$, 160, 108 Transmission electron microscopy

alkali titanium oxides: pseudo-one-dimensional periodic domain boundary structures, **162**, 128

Aurivillius oxides with n = 1 produced by mechanochemical activation, **160**, 54

 $ReB_{22}C_2N$ (Re = Y,Ho,Er,Tm,Lu), 159, 174

Ca₄Nb₂O₉-CaTiO₃, **160**, 257

CdTeMoO₆ and CoTeMoO₆: fluorite-type superstructure with cation and anion deficiencies (\blacksquare CoTeMo)(\square_2 O₆), **160**, 401

electron-doped layered $\text{La}_{2-x}\text{Ca}_{1+2x}\text{Mn}_2\text{O}_7$ orthorhombic phase in 0.8 < x < 1.0 composition range, **157**, 309

In₂O₃-ZnO transparent conducting thin films made by pulsed laser deposition: structures and textures, 158, 119

MgF₂ decomposition in, 157, 30

Tris-oxalato transition metals

as building blocks for self-assembly of molecular magnets, 159, 262

Tris[p-(N-oxyl-N-tert-butylamino)phenyl]amine

ground spin states, 159, 428

Tris[p-(N-oxyl-N-tert-butylamino)phenyl]borane

ground spin states, 159, 428

Tris[p-(N-oxyl-N-tert-butylamino)phenyl]methyl

ground spin states, 159, 428

1,3,5-Trithia-2,4,6-triazapentalenyl

crystals at room temperature, magnetic bistability, comparison with spin crossover transitions, **159**, 451

Tungsten

KIn(WO₄)₂, phase transitions, vibrational study, **158**, 334

 α -La₂W₂O₉, *ab initio* structure determination from X-ray and neutron powder diffraction, **159**, 223

lead-free relaxor ferroelectrics with tetragonal tungsten bronze structure, solid state chemistry, **162**, 260

 A_x Mo_yW_{1-y}O₃ (A = K,Ce) intergrowth tungsten bronzes, synthesis and microanalysis, **162**, 341

Pb-Nb-W-O oxides based on tetragonal tungsten bronze structure, **161**, 135

WC, formation by continuous reaction during mechanical alloying, mechanism, 158, 268

 $W_xMo_{(1-x)}S_2$ lamellar solid solution, two cation disulfide layers in, **160**, 147

 WO_{3-x} , structure and reduction leading to WS_2 formation, 162, 300

 WS_2 nanotube formation via WO_{3-x} reduction, 162, 300

Tunnel structure

Na₄Mn₉O₁₈ with, calcium insertion in, **162**, 34

PbVOP₂O₇, intersecting tunnel structure, **162**, 354

Twinning

crystal, fluorocyclohexane/thiourea inclusion compounds, 156, 16

U

Ultraviolet-visible spectroscopy

Co(II) coordination polymers $\{[CoBr_2(2,1,3-benzothiadiazole)]\}_n$ and $\{[CoCl_2(btd)]\}_n$, 159, 371

TiO₂ nanocrystalline anatase, **158**, 180

Uranium

 $(C_5H_{14}N_2)_2U_2F_{12}\cdot 5H_2O,$ hydrothermal synthesis, structure, and magnetic properties, $158,\,87$

 $(NH_4)_7U_6F_{31}$, hydrothermal synthesis, structure, and magnetic properties. **158**, 87

RbUSb_{0.33}Te₆, infinite $[Te_x]^{n-}$ chains in, periodic modulations, **161**, 17 U₃M₂M'₃ (M = Al,Ga; M' = Si,Ge), magnetotransport and heat capacity, **158**, 227

 $U_2Cu_{0.78}Te_6$, synthesis and structure, 159, 186

 α -U₃O₈, module based on, in description of L-Ta₂O₅ and related structures, **160**, 62

 $A_2[(UO_2)_3(IO_3)_4O_2]$ (A = K,Rb,Tl) and $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr,Ba,Pb), formation, effects of cations, **161**, 416

٧

Valence

nonintegar, Ce in Ce₂Ni₂₂C_{2.75}, **161**, 63

Valeraldehyde

intercalation into VOPO₄, 157, 50

Vanadium

BaV₁₃O₁₈, crystal structure, 158, 61

Bi₂VO₅ and Bi₂VO_{5.5}, Aurivillius compounds, production by mechanochemical activation, **160**, 54

Bi_{3.5}V_{1.2}O_{8.25}, preparation and characterization, **161**, 410

 $ACa_9(VO_4)_7$ (A = Bi,rare earth), synthesis and structure, 157, 255

Cd_{5-\(\eta/2\)}VO₄)₃I_{1-\(\eta\)}, modified chimney-ladder structures with ladder-ladder and chimney-ladder coupling, **156**, 88

Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, 161. 23

Ce_{1-x}Bi_xVO₄ solid solutions

Raman and IR spectroscopy, 158, 254

Raman spectroscopy for $0 \le x \le 0.68$, 158, 264

 $Ce_{1-x}Ca_xVO_{4-x}$ ($0 \le x \le 0.41$) solid solutions, Raman spectra, **158**, 264 $Ce_{1-x}M_xVO_{4-0.5x}(M = Pb,Sr,Ca)$ solid solutions, Raman and IR spectroscopy, **158**, 254

- $Co(NH_3)_6(V_{1.5}P_{0.5})O_6OH$, hydrothermal synthesis and crystal structure. **159.** 239
- CuV₂O₆, anisotropic spin exchange interaction in, spin dimer analysis, 156, 110
- $Cu_{3+1.5x}R_{4-x}(VO_4)_6$ (R = Fe,Cr), phase formation and crystal structures, **156**, 339
- Hg₄VO(PO₄)₂ containing Hg₂²⁺ dumbbells, crystal structure and thermal and magnetic properties, **158**, 94
- (H₂O)[V₂^{III}F₆] and Pyr-VF₃ of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, **162**, 266
- ALaFeVO₆ (A = Ca,Sr) double-perovskite oxides, synthesis, structure, and properties, **162**, 250
- Li₂NaV₂(PO₄)₃, 3.7-V lithium-insertion cathode with rhombohedral NASICON structure, 162, 176
- Li-V-X systems (X = P,As), synthesis and crystal structure, **156**, 37
- LiVO₃, structural disorder and ionic conductivity, neutron powder diffraction study from 340 to 890 K, 156, 379
- $\text{Li}_{1+x}V_3O_8$, mechanochemical synthesis, reduction processes in, 160, 444
- $[NH_3(CH_2)_2NH_3]_4[Ga_{4-z}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), synthesis and characterization, **159**, 59
- noncluster vanadium(IV) coordination polymers, solvothermal synthesis, crystal structure, and ion exchange, 160, 118
- PbVOP₂O₇ with intersecting tunnel structure, **162**, 354
- polyoxovanadates, synthesis from aqueous solution, 162, 315
- $LnTi_{0.5}V_{0.5}O_3$ (Ln = Ce,Pr), magnetic properties, 156, 452
- VO₂ nanopowders, preparation and characterization, 156, 274
- V₂O₃, antiferromagnetic insulating phase of, AC conductivity, **159**, 41
- V₂O₅ nanocrystals, preparation and characterization, **159**, 181
- VO₂· H₂O needle-like nanocrystals, metastable phase and phase transformation, 157, 250
- VOPO₄, aldehyde intercalation into, 157, 50
- $\rm V_5S_8$, magnetic properties, effects of metal-atom clustering, 160, 287 Vernier modulated phases
- anion-excess fluorite-related phases in $LnOF-LnF_3$ systems (Ln = Nd, Sm,Eu,Gd), 157, 134
- Vibronic interaction
 - effect on magnetic anisotropy, 159, 268
- Voltammetry
 - Li-Fe-Mn-O spinel solid solutions, 161, 152
- Volume compensation
 - in cellular paracrystal formation from Co-doped CaO polycrystals, 161, 341

W

Water

- Al[(HO₃PCH₂)₃N]H₂O, synthesis and characterization, **160**, 278
- $AlO(OH) \cdot \alpha H_2O$, monoclinic nanocrystals formed by activated surface hydrolysis of Al metal, XRD and IR studies, 157, 40
- BaAl₂O₃(OH)₂· H₂O with six-membered rings, synthesis and characterization, **161**, 243
- BaFe[(CN)₅NO]·3H₂O, oxidative thermal decomposition, BaFeO_{2.8-δ} prepared from, ab initio structure solution, **160**, 17
- $Cd(CN)_2 \cdot 2/3H_2O \cdot t$ -BuOH, structure, **156**, 51
- M_4 Cd₂(C₂O₄)₄· 4H₂O (M = Na,K), synthesis, structure, and properties, **162**, 150
- Cd(VO₂)₄(SeO₃)₃·H₂O, hydrothermal synthesis and crystal structure, **161**, 23
- charge transfer salts of bis(ethylenedithio) tetrathiafulvalene with thiocyanato-complex anions: (BEDT-TTF)₂[Cr(NCS)₄(bipyrimidine)]·0.15H₂O, **159**, 385
- $[(S)-C_5H_{14}N_2][Fe_4(C_2O_4)_3(HPO_4)_2(H_2O)_2]$, synthesis and characterization, **157**, 233

- C₁₀H₂₈N₄P₄O₁₂·4H₂O, crystal structure, thermal analysis, and vibrational spectra, 156, 364
- (C₅H₁₄N₂)₂U₂F₁₂·5H₂O, hydrothermal synthesis, structure, and magnetic properties, **158**, 87
- $(C_2H_{10}N_2)Zr_2F_{10} \cdot H_2O$ and $(C_4H_{12}N_2)ZrF_6 \cdot H_2O$, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198
- (C₁₀N₄H₂₈)[Zn₆(HPO₄)₂(PO₄)₄] · 2H₂O with layer structure, synthesis, crystal structure, and NMR, **162**, 168
- Co₃BTCA₂(H₂O)₄, resonance in nonlinear susceptibilities, 159, 379
- CoFe(CN)₅NH₃·6H₂O, photo- and dehydration-induced charge transfer processes with spin transition, **159**, 336
- Co(H₂O)₂O₂CC₆H₄CO₂, synthesis, crystal structure, and magnetic properties, 159, 343
- $[Cr(CN)_6]_2[Ni(L)_2]_3 \cdot 7H_2O$ pentanuclear complexes, characterization and magnetic properties, **159**, 302
- [Cr₃O(O₂CC₆H₄Cl)₆(H₂O)₃][NO₃], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321
- Cs₂Co₃(HPO₄)(PO₄)₂·H₂O, synthesis and characterization, 156, 242
- Cu(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166
- $Cu_xM_{1-x}(HCOO)_2 \cdot 2H_2O$ (M = Mn,Co,Ni,Cd), crystal structures and thermal behavior, **157**, 23
- [Cu₁₂ $Ln_6(\mu_3$ -OH)₂₄(C₅H₅NCH₂CO₂)₁₂(H₂O)₁₈(μ_9 -NO₃)](PF₆)₁₀(NO₃) $_7$ · 12H₂O ($Ln^{III} = Sm^{III}$,Gd^{III}), synthesis and characterization, **161**, 214
- $H_2O(NH_4)_2HPO_4$ - $(NH_4)_2SO_4$, polythermal diagram between 0 and $25^{\circ}C$, 156, 264
- (H₂O)[V₂^{III}F₆] of pyrochlore type, hydrothermal synthesis, structure, and magnetic characterization, 162, 266
- hydrogen coinserted hydrated sodium and potassium molybdenum bronzes, direct synthesis and characterization, **159**, 87
- K_{0.2}Co_{1.4}[Fe(CN)₆]·7H₂O, microstructural changes induced by thermal treatment, **156**, 400
- Li₂Zn(HPO₄)₂ · 0.66H₂O, synthesis and characterization, **162**, 29
- $Mn_xCo_{1-x}(O_3PC_6H_5)\cdot H_2O$, structure and magnetic properties, 159, 362
- [Mn(L)]₃[Cr(CN)₆]₂ · nH₂O (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5), 3D network structure, magnetic properties, and relevance to Prussian blue analogue, **159**, 328
- $\operatorname{Mn_3[Cr(CN)_6]_2} \cdot 12\operatorname{H_2O}$, relationship to $[\operatorname{Mn}(L)]_3[\operatorname{Cr(CN)_6]_2} \cdot n\operatorname{H_2O}$ (L = ethylenediamine, n = 4; L = glycine amide, n = 2.5),**159**, 328
- $Mn_6(H_2O)_2(HPO_4)_4(PO_4)_2 \cdot C_4N_2H_{12} \cdot H_2O$, synthesis and characterization, **156**, 32
- MnO₂·0.22H₂O and MnO₂·0.70H₂O, synthesis from monoclinic-type LiMnO₂, **160**, 69
- [Mn₃O(O₂CPh)₆(NC₅H₅)₂(H₂O)], high-temperature reactions, effects of counterion, ligand, and metal, **159**, 321
- $[Mo_{12}CdP_8O_{50}(OH)_{12}Cd[N(CH_3)_4]_2(H_3O)_6] \cdot 5H_2O, \ \ revised \ \ space \\ groups, \ \textbf{159}, \ 7$
- NaHPO₃F·2.5H₂O, synthesis and crystal structure, 156, 415
- Na₂In₂[PO₃(OH)]₄·H₂O, hydrothermal synthesis and crystal structure, **157**, 213
- NaLa₂Ti₂TaO₁₀ · xH₂O (x = 2,0.9,0) layered perovskites, structure, **158**, 290
- Na₂PO₃F·10H₂O, synthesis and crystal structure, 156, 415
- Ni(C₈H₆NO₂)₂(H₂O)₂ interpenetration networks, hydrothermal synthesis and crystal structure, 157, 166
- polynuclear self-assembled Mn(II), Co(II), and Cu(II) cluster complexes, synthesis, structure, and magnetism, 159, 308
- $[(nPr_4N)(Me_3Sn)_2Ir(CN)_6 \cdot 2H_2O]$ and $[(nPr_4P)(Me_3Sn)_2Co(CN)_6 \cdot 2H_2O]$, crystal structures, **157**, 324
- α -Sn(HPO₄)₂·H₂O, solid-state synthetic reaction and characterization, 159, 130

Sr(HC₂O₄)·1/2(C₂O₄)·H₂O, structure determination from powder X-ray and neutron diffraction studies, **157**, 283

Th₂(PO₄)₂HPO₄·H₂O, hydrothermal synthesis and characterization,

 $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_4N_2H_{12} \cdot H_2O$ and $Ti_4(HPO_4)_2(PO_4)_4F_2 \cdot C_2N_2H_{10} \cdot H_2O$, hydrothermal synthesis and structure, **162**, 96

 $AE[(UO_2)_2(IO_3)_2O_2](H_2O)$ (AE = Sr, Ba, Pb), formation, effects of cations, 161, 416

 $VO_2 \cdot H_2O$ needle-like nanocrystals, metastable phase and phase transformation, 157, 250

Weberite

Na₂MgInF₇, crystal structure, 159, 234

Χ

Xenon

[Nd(XeF₂)_n](AsF₆)₃ (n = 3,2.5), synthesis and Raman spectra, and crystal structure of n = 2.5 compound, **162**, 243

Xerogels

silica, modification by fluoride ion-catalyzed treatment, **162**, 371 X-ray absorption fine structure

 $Li(Mn,M)_2O_4$ (M = Cr,Co,Ni) 5V cathode materials for lithium-ion secondary batteries, in situ study, **156**, 286

X-ray absorption near-edge structure

oxidation state determination for Cu and Ru in $La_{2-x}Sr_xCu_{1-y}Ru_yO_{4-\delta}$, 156, 194

 β -PbO, quantum ab initio explanation, 157, 220

pillaring of K_{1-x}La_xCa_{2-x}Nb₃O₁₀ layered perovskites with Fe₂O₃ nanoparticles, **160**, 435

X-ray absorption spectroscopy

 $Ce_2Ni_{22}C_{2.75}$, L_m -XAS study, **161**, 63

charge-carrier localization on Mn surface sites in granular LaMnO $_{3+\delta}$, 160, 123

polarized, mercuric bromide intercalated Bi₂Sr₂CaCu₂O_y single crystal, **160.** 39

spin state transition in LaCoO₃ depending on temperature or Sr doping, 158, 208

X-ray diffraction, see also Powder X-ray diffraction

activated surface hydrolysis of Al metal into AlO(OH) αH_2O nanocrystals in monoclinic structure, 157, 40

 $n\text{Ba}(\text{Nb,Zr})\text{O}_3 + 3m\text{NbO} (n = 2-5; m = 1), 156, 75$

BaV₁₃O₁₈, 158, 61

 $Ca_3Co_{1+x}Mn_{1-x}O_6$ and Ca_3CuMnO_6 quasi-one-dimensional oxides, **160**, 293

CdCr_{2-x}Ga_xSe₄ spinel system, 158, 34

CeIrIn₅ and CeRhIn₅ heavy fermion materials, 158, 25

Cp₂Mo(dmit) with Br⁻ or BF₄⁻, isolated dimers and ordered antiferromagnetic ground state, 159, 413

CsH₅(AsO₄)₂, 161, 9

energy-dispersive, $La_{0.5-x}Bi_xCa_{0.5}MnO_3$ (x=0.1,0.15,0.2) perovskite: lattice distortion under high pressure, **160**, 307

fluorocyclohexane/thiourea inclusion compounds: temperature-dependent structural properties and crystal twinning, **156**, 16

goethite structural change in methane oxidation, in situ study, 156, 225 $K_2In_{12}Se_{19}$, 161, 385

LiKSO₄, **148**, 316; comments, **156**, 251, 253

 $\text{Li}_{1-z}\text{Ni}_{1+z}\text{O}_2$ (z = 0.075) single crystals, **160**, 178

local structure in heat-treated oxyhydroxyapatite microcrystals, **160**, 460 mono-L-valinium nitrate, **158**, 1

NaYFPO₄, 157, 8

 $[NH_3(CH_2)_2NH_3]_4[Ga_{4-x}V_x(HPO_4)_5(PO_4)_3H(OH)_2]$ (x = 1.65), **159**,

 $Pb_2(M_{2-y}Pb_y)O_{7-\delta}$ (0.0 < y < 0.8; M = Nb,Ta) pyrochlores: structural refinements. **156.** 207

products of high-temperature reactions of metal triangles, effects of counterion, ligand, and metal, **159**, 321

 WO_{3-x} phases leading to WS_2 formation, **162**, 300

X-ray photoelectron spectroscopy

 $Nd_{1-x}Ca_xCrO_4$ (x = 0.02-0.20), Cr^V-Cr^{VI} mixed valence compounds, **156**, 370

Υ

Ytterbium

Li₂Yb₅O₄(BO₃)₃ discovered in Li₂O-Ln₂O₃-B₂O₃ phase diagram, structural analysis, **156**, 161

NaYbP₂S₆, structure modification, 160, 195

YbAgMg, synthesis and crystal structures, 161, 67

YbCa₉(VO₄)₇, synthesis and structure, 157, 255

 $Yb(Co_{1/2}Mn_{1/2})O_3$, phonon modes, **160**, 350

Yb₅In₂Sb₆ Zintl phase with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177

 $AYbO_3$ (A = La-Nd) perovskites, preparation, magnetic susceptibility, and specific heat, 157, 173

Yttrium

 $Ca_{1-x}Y_xMnO_3$, structural phase diagram, **156**, 458

NaYFPO₄, hydrothermal synthesis and crystal structure, 157, 8

NH₄Y₃F₁₀, hydrothermal syntheses and crystal structure, **158**, 358

YBaCo₂O_{5+x} $(0.00 \le x \le 0.52)$, oxygen nonstoichiometry, structures, and physical properties, **156**, 355

YB₂₂C₂N, synthesis and crystal structure, **159**, 174

YCa₉(VO₄)₇, synthesis and structure, 157, 255

YCuO_{2+x} delafossite, fine structure determination by synchrotron powder diffraction and electron microscopy, **156**, 428

YNbO₄ and YNbO₄:Bi, electronic structures and luminescence properties. 156, 267

Y₃Ru₂C₅, preparation, properties, and crystal structure, 160, 77

 $Y_3Si_2C_2$, subcell and superstructure, 156, 1

Y₂TiO₅, Raman spectroscopy, **160**, 25

Y₂Ti_{2-y}Zr_yO₇ pyrochlore, transformation to fluorite structure, **160**, 25 yttria-stabilized zirconia nanoparticles, synthesis by molecular decomposition process, **157**, 149

Ζ

Zinc

BaZnCl₄-II:Sm²⁺, crystal structure, thermal behavior, and luminescence, comparison to BaZnCl₄-I:Sm²⁺, **162**, 237

 $BaLn_2ZnS_5$ (Ln = La, Ce, Pr, Nd), crystal structure and magnetic properties, **159**, 163

 $(C_{10}N_4H_{28})[Zn_6(HPO_4)_2(PO_4)_4] \cdot 2H_2O$ with layer structure, **162**, 168 $[C_6N_4H_{22}][Zn_6(PO_4)_4(HPO_4)_2]$ formed by one-dimensional tubes, synthesis and crystal structure, **157**, 110

doping of α-Fe₂O₃, effects on structure and magnetic properties, **156**, 408 In₂O₃–ZnO transparent conducting thin films made by pulsed laser deposition, structures and textures, TEM study, **158**, 119

Li₂Zn(HPO₄)₂·0.66H₂O, synthesis and characterization, **162**, 29

(NC₅H₁₂₎₂·Zn₃(HPO₃₎₄, low-density framework built up from fully connected (3,4) net of ZnO₄ tetrahedra and HPO₃ pseudo pyramids, **160**, 4

Nd₂BaZnO₅, Nd³⁺ in, optical and crystal-field analysis, 162, 42

 $(NH_4)_4[Zn_4Ga_4P_8O_{32}]$ and $(NH_4)_{16}[Zn_{16}Ga_8P_{24}O_{96}]$, syntheses and structures, **156**, 480

 $(\mathrm{Sr_{1-x}La_{1+x}})\mathrm{Zn_{1-x}O_{3.5-x/2}}$ (0.01 $\leq x \leq$ 0.03), synthesis and crystal structure, **159**, 19

- TT'_2Zn_{20} (T = Zr,Hf,Nb; T' = Mn,Fe,Ru,Co,Rh,Ni) with $CeCr_2Al_{20}$ -type structure, **161**, 288
- Zn-Al layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52
- [ZnAl] layered double hydroxide, platinum complex intercalation into, 161, 332
- Zn(II) complexes with imino nitroxyl diradical, magnetic properties, 159, 455
- Zn-Cr layered double hydroxide, amino acid intercalation by coprecipitation, **162**, 52
- [Zn(dicyanamide)₂pyrazine], synthesis, structural isomerism, and magnetism, **159**, 352
- [Zn^{II}Ru^{III}(oxalate)₃], and decamethylmetallocenium cations, layered molecule-based magnets formed by, **159**, 391

Zintl phases

Na₂Ba₃Sb₄, **162**, 327

Yb₅In₂Sb₆, with narrow band gap, synthesis, crystal structure, thermoelectric properties, and electronic structure, **155**, 55; *erratum*, **161**, 177

Zirconium

- Al-Ti-Zr and Al-Zr nanocomposites with hexagonal structure, synthesis and characterization, **158**, 134
- nBa(Nb,Zr)O₃ + 3mNbO (n = 2–5; m = 1), single-crystal X-ray diffraction studies, **156**, 75
- (C₂H₁₀N₂)Zr₂F₁₀·H₂O and (C₄H₁₂N₂)ZrF₆·H₂O, hydrothermal syntheses, structural relationships, and thermal behavior, **159**, 198

- fluorite-type ceria-zirconia solid solution nanoparticles, low-temperature direct synthesis by forced cohydrolysis at 100°C, **158**, 112
- $\text{Li}_2\text{FeZr}(\text{PO}_4)_3$, mixed α/β superstructures, **156**, 305
- PbZr_xTi_{1-x}O₃ solid solutions, enthalpies of formation, **161**, 402
- PZT pyrochlore metastable phase, support-promoted stabilization by epitaxial thin film growth, **158**, 40
- rare earth sesquioxide-stabilized cubic zirconias, strain-driven pyrochlore to defect fluorite phase transition, **159**, 121
- Si-Zr nanocomposite with lamellar structure, synthesis and characterization, 158, 134
- Sr_{1-x}Ba_xZrO₃ perovskites, effects of composition and temperature, high-resolution powder diffraction study, **161**, 106
- SrTiO₃-SrZrO₃ solid solution, crystal structure and phase transitions, 156, 255
- Y₂Ti_{2-y}Zr_yO₇ pyrochlore, transformation to fluorite structure, **160**, 25 yttria-stabilized zirconia nanoparticles, synthesis by molecular decomposition process, **157**, 149
- β-ZrNCl, high-pressure synthesis and crystal structure, 159, 80
- ZrO₂, crystallization in sol-gel system, 158, 349
- ZrO₂-Gd₂O₃-TiO₂, phase relations at 1500°C, 160, 302
- ZrP₂O₇, 3-D incommensurately modulated cubic phase in, symmetry characterization via temperature-dependent electron diffraction, 157, 186
- $ZrT_2'Zn_{20}$ (T' = Mn,Fe,Ru,Co,Rh,Ni) with $CeCr_2Al_{20}$ -type structure, **161.** 288